Part Numbering

Chip Monolithic Ceramic Capacitors

GR M 18 8 B1 1H 102 K A01 K (Part Number)

Product ID

2 Series

₹ 3enes				
Product ID	Code	Series		
	M	Tin Plated Layer		
GR	4	Only for Information Devices / Tip & Ring		
	7	Only for Camera Flash Circuit		
ER	В	High Frequency Type		
GQ	М	High Frequency for Flow/Reflow Soldering		
GM	Α	Monolithic Microchip		
GIVI	D	for Bonding		
GN	M	Capacitor Array		
	L	Low ESL Wide Width Type		
LL	Α	Eight-termination Low ESL Type		
	М	Ten-termination Low ESL Type		
GJ	М	High Frequency Low Loss Type		
GA	2	for AC250V (r.m.s.)		
GA	3	Safety Standard Recognized Type		

3Dimension (LXW)

Code	Dimension (LXW)	EIA
02	0.4×0.2mm	01005
03	0.6×0.3mm	0201
05	0.5×0.5mm	0202
08	0.8×0.8mm	0303
0D	0.38×0.38mm	015015
ОМ	0.9×0.6mm	0302
11	1.25×1.0mm	0504
15	1.0×0.5mm	0402
18	1.6×0.8mm	0603
1M	1.37×1.0mm	0504
21	2.0×1.25mm	0805
22	2.8×2.8mm	1111
31	3.2×1.6mm	1206
32	3.2×2.5mm	1210
42	4.5×2.0mm	1808
43	4.5×3.2mm	1812
52	5.7×2.8mm	2211
55	5.7×5.0mm	2220

4Dimension (T)

Code	Dimension (T)			
2	0.2mm			
2	2-elements (Array Type)			
3	0.3mm			
4	4-elements (Array Type)			
5	0.5mm			
6	0.6mm			
7	0.7mm			
8	0.8mm			
9	0.85mm			
Α	1.0mm			
В	1.25mm			
С	1.6mm			
D	2.0mm			
E	2.5mm			
F	3.2mm			
М	1.15mm			
N	1.35mm			
Q	1.5mm			
R	1.8mm			
s	2.8mm			
Х	Depends on individual standards.			

With the array type GNM series, "Dimension(T)" indicates the number of

5Temperature Characteristics

Temperature Characteristic Codes			Operating				
Code Public STD Code		Referance Temperature	Temperature Range	Capacitance Change or Temperature Coefficient	Temperature Range		
1X	SL *1	JIS	20°C	20 to 85°C	+350 to -1000ppm/°C	-55 to 125°C	
2C	CH *1	JIS	20°C	20 to 125°C	0±60ppm/°C	-55 to 125°C	
2P	PH *1	JIS	20°C	20 to 85°C	-150±60ppm/°C	-25 to 85°C	
2R	RH *1	JIS	20°C	20 to 85°C	-220±60ppm/°C	-25 to 85°C	
2 S	SH *1	JIS	20°C	20 to 85°C	-330±60ppm/°C	-25 to 85°C	
2T	TH *1	JIS	20°C	20 to 85°C	-470±60ppm/°C	-25 to 85°C	
3C	CJ *1	JIS	20°C	20 to 125°C	0±120ppm/°C	-55 to 125°C	
3P	PJ *1	JIS	20°C	20 to 85°C	-150±120ppm/°C	-25 to 85°C	
3R	RJ *1	JIS	20°C	20 to 85°C	-220±120ppm/°C	-25 to 85°C	
3S	SJ *1	JIS	20°C	20 to 85°C	-330±120ppm/°C	-25 to 85°C	
3T	TJ *1	JIS	20°C	20 to 85°C	-470±120ppm/°C	-25 to 85°C	
3U	UJ *1	JIS	20°C	20 to 85°C	-750±120ppm/°C	-25 to 85°C	
4C	CK *1	JIS	20°C	20 to 125°C	0±250ppm/°C	-55 to 125°C	
5C	C0G *1	EIA	25°C	25 to 125°C	0±30ppm/°C	-55 to 125°C	
5G	X8G *1	EIA	25°C	25 to 150°C	0±30ppm/°C	-55 to 150°C	
6C	C0H *1	EIA	25°C	25 to 125°C	0±60ppm/°C	-55 to 125°C	
6P	P2H *1	EIA	25°C	25 to 85°C	-150±60ppm/°C	-55 to 125°C	
6R	R2H *1	EIA	25°C	25 to 85°C	-220±60ppm/°C	-55 to 125°C	
6S	S2H *1	EIA	25°C	25 to 85°C	-330±60ppm/°C	-55 to 125°C	
6T	T2H *1	EIA	25°C	25 to 85°C	-470±60ppm/°C	-55 to 125°C	
7U	U2J *1	EIA	25°C	25 to 125°C	-750±120ppm/°C	-55 to 125°C	
B1	B *2	JIS	20°C	-25 to 85°C	±10%	-25 to 85°C	
В3	В	JIS	20°C	-25 to 85°C	±10%	-25 to 85°C	
C 7	X7S	EIA	25°C	-55 to 125°C	±22%	-55 to 125°C	
C8	X6S	EIA	25°C	-55 to 105°C	±22%	-55 to 105°C	
D7	X7T	EIA	25°C	-55 to 125°C	+22, -33%	-55 to 125°C	
D8	X6T	EIA	25°C	-55 to 105°C	+22, -33%	-55 to 105°C	
E7	X7U	EIA	25°C	-55 to 125°C	+22, -56%	-55 to 125°C	
F1	F *2	JIS	20°C	-25 to 85°C	+30, -80%	-25 to 85°C	
F5	Y5V	EIA	25°C	-30 to 85°C	+22, -82%	-30 to 85°C	
L8	X8L	EIA	25°C	-55 to 150°C	+15, -40%	-55 to 150°C	
R1	R *2	JIS	20°C	-55 to 125°C	±15%	-55 to 125°C	
R3	R	JIS	20°C	-55 to 125°C	±15%	-55 to 125°C	
R6	X5R	EIA	25°C	-55 to 85°C	±15%	-55 to 85°C	
R7	X7R	EIA	25°C	-55 to 125°C	±15%	-55 to 125°C	
R9	X8R	EIA	25°C	-55 to 150°C	±15%	-55 to 150°C	
				-25 to 20°C	-4700+1000/-2500ppm/°C		
9E	ZLM	*3	20°C	20 to 85°C	-4700+500/-1000ppm/°C	-25 to 85°C	
					±10% *4		
W0	-	-	25°C	-55 to 125°C	+22, -33% *5	-55 to 125°C	

^{*1} Please refer to table for Capacitance Change under reference temperature.

^{*2} Capacitance change is specified with 50% rated voltage applied.

^{*3,*4} Murata Temperature Characteristic Code.

^{*4} Apply DC350V bias. *5 No DC bias.

●Capacitance Change from each temperature

JIS Code

	Capacitance Change from 20°C (%)								
Murata Code	-5	5°C	-2!	5°C	-10°C				
	Max.	Min.	Max.	Min.	Max.	Min.			
1X	-	-	-	-	-				
2C	0.82	-0.45	0.49	-0.27	0.33	-0.18			
2P	-	-	1.32	0.41	0.88	0.27			
2R	-	-	1.70	0.72	1.13	0.48			
28	-	-	2.30	1.22	1.54	0.81			
2T	-	-	3.07	1.85	2.05	1.23			
3C	1.37	-0.90	0.82	-0.54	0.55	-0.36			
3P	-	-	1.65	0.14	1.10	0.09			
3R	-	-	2.03	0.45	1.35	0.30			
3S	_	-	2.63	0.95	1.76	0.63			
3T	_	-	3.40	1.58	2.27	1.05			
3U	_	-	4.94	2.84	3.29	1.89			
4C	2.56	-1.88	1.54	-1.13	1.02	-0.75			

EIA Code

	Capacitance Change from 25°C (%)							
Murata Code	-55°C		-30	−30°C)°C		
	Max.	Min.	Max.	Min.	Max.	Min.		
5C/5G	0.58	-0.24	0.40	-0.17	0.25	-0.11		
6C	0.87	-0.48	0.59	-0.33	0.38	-0.21		
6P	2.33	0.72	1.61	0.50	1.02	0.32		
6R	3.02	1.28	2.08	0.88	1.32	0.56		
6S	4.09	2.16	2.81	1.49	1.79	0.95		
6T	5.46	3.28	3.75	2.26	2.39	1.44		
7U	8.78	5.04	6.04	3.47	3.84	2.21		

6 Rated Voltage

Code	Rated Voltage
0G	DC4V
0J	DC6.3V
1A	DC10V
1C	DC16V
1E	DC25V
1H	DC50V
2A	DC100V
2D	DC200V
2E	DC250V
YD	DC300V
2H	DC500V
2J	DC630V
3A	DC1kV
3D	DC2kV
3F	DC3.15kV
ВВ	DC350V (for Camera Flash Circuit)
E2	AC250V
GB	X2; AC250V (Safety Standard Recognized Type GB)
GC	X1/Y2; AC250V (Safety Standard Recognized Type GC)
GD	Y3; AC250V (Safety Standard Recognized Type GD)
GF	Y2, X1/Y2; AC250V (Safety Standard Recognized Type GF)

Capacitance

Ex.

Expressed by three-digit alphanumerics. The unit is pico-farad (pF). The first and second figures are significant digits, and the third figure expresses the number of zeros which follow the two numbers.If there is a decimal point, it is expressed by the capital letter "R". In this case, all figures are significant digits.

.)	Code	Capacitance
	R50	0.5pF
	1R0	1.0pF
	100	10pF
	103	10000pF

Continued on the following page.

Please check MURATA home page (http://www.murata.com/index.html) in case you can not find the part number on the catalog.

muRata

8Capacitance Tolerance

Code	Capacitance Tolerance	TC	Series	Capac	itance Step	
W	±0.05pF	СΔ	GRM/GJM	≦9.9pF	0.1pF	
			GRM/GJM	≦9.9pF	0.1pF	
_	10.1×F		0014	≦1pF	0.1pF	
В	±0.1pF	CΔ	GQM	1.1 to 9.9pF	1pF and E24 Series	
			ERB	≦9.9pF	1pF and E24 Series	
		СΔ	GRM/GJM	≦9.9pF	0.1pF	
		except CΔ	GRM	≦5pF	* 1pF	
С	±0.25pF		ERB	≦9.9pF	1pF and E24 Series	
		СΔ	GQM	≦1pF	0.1pF	
			GQIVI	1.1 to 9.9pF	1pF and E24 Series	
	±0.5pF	СΔ	GRM/GJM	5.1 to 9.9pF	0.1pF	
D		except CΔ	GRM	5.1 to 9.9pF	* 1pF	
		СΔ	ERB/GQM	5.1 to 9.9pF	1pF and E24 Series	
G	+20/	СΔ	GJM	≧10pF	E12 Series	
G	±2%	СΔ	GQM/ERB	≧10pF	E24 Series	
J	±5%	CΔ-SL	GRM/GA3	≧10pF	E12 Series	
J	±3 %	СΔ	ERB/GQM/GJM	≥10pF	E24 Series	
		B, R, X7R, X5R, ZLM	GRM/GR7/GA3	E6	Series	
K	±10%	C0G	GNM	E6	Series	
		B, R, X7R, X5R, ZLM	GR4, GMD	E12 Series		
		B, R, X7R, X7S	GRM/GMA	Εć	Series	
М	±20%	X5R, X7R, X7S	GNM	E3 Series E3 Series		
	±20%	X7R	GA2			
		X5R, X7R, X7S, X6S	LLL/LLA/LLM	E3 Series		
Z	+80%, -20%	F, Y5V GRM E3 Series				
R		Depe	ends on individual standards.			

^{*} E24 series is also available.

9Individual Specification Code Expressed by three figures.

Packaging

To ackaging	
Code	Packaging
L	ø180mm Embossed Taping
D	ø180mm Paper Taping
E	ø180mm Paper Taping (LLL15)
K	ø330mm Embossed Taping
J	ø330mm Paper Taping
F	ø330mm Paper Taping (LLL15)
В	Bulk
С	Bulk Case
Т	Bulk Tray

Please check MURATA home page (http://www.murata.com/index.html) in case you can not find the part number on the catalog.

sales representatives or product engineers before ordering.

• This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

Selection Guide of Chip Monolithic Ceramic Capacitors

Chip Monolithic Ceramic Capacitors

for General Purpose GRM Series (Temperature Compensating Type)

■ Features

- Highter resistance of solder-leaching due to the Ni-barriered termination, applicable for reflow-soldering, and flow-soldering (GRM18/21/31 type only).
- 2. The GRM series is lead free product.
- 3. Smaller size and higher capacitance value.
- 4. High reliability and no polarity.
- 5. Excellent pulse responsibility and noise reduction due to the low impedance at high frequency.
- The GRM series is available in paper or embossed tape and reel packaging for automatic placement.
 Bulk case packaging is also available for GRM15/18/21(T=0.6,1.25).
- 7. Ta replacement.

Annlications	

General electronic equipment

		Din	nensions	(mm)		
Part Number	L	W	T	e	g min.	
GRM022	0.4 ±0.02	0.2 ±0.02	0.2 ±0.02	0.07 to 0.14		
GRM033	0.6 ±0.03	0.3 ±0.03	0.3 ±0.03	0.1 to 0.2	0.2	
GRM15X			0.25 ±0.05	0.1 to 0.3	0.4	-
GRM153	1.0 ±0.05	0.5 ±0.05	0.3 ±0.03	0.1 10 0.3	0.4	(A)
GRM155			0.5 ±0.05	0.15 to 0.35	0.3	-
GRM185	1.6 ±0.1	0.8 ±0.1	0.5 +0/-0.1	0.2 to 0.5	0.5	
GRM188*	1.0 ±0.1	0.6 ±0.1	0.8 ±0.1	0.2 10 0.5	0.5	
GRM216			0.6 ±0.1			
GRM219	2.0 ±0.1	1.25 ±0.1	0.85 ±0.1	0.2 to 0.7	to 0.7 0.7	
GRM21A	2.0 ±0.1	1.25 ±0.1	1.0 +0/-0.2	0.2 10 0.7	0.7	
GRM21B			1.25 ±0.1			
GRM316			0.6 ±0.1			
GRM319	3.2 ±0.15	1.6 ±0.15	0.85 ±0.1	0.3 to 0.8	1.5 e g e	e g e
GRM31M			1.15 ±0.1	0.3 10 0.6		
GRM31C	3.2 ±0.2	1.6 ±0.2	1.6 ±0.2			
GRM329			0.85 ±0.1			
GRM32A			1.0 +0/-0.2			
GRM32M			1.15 ±0.1			
GRM32N	3.2 ±0.3	3.2 ±0.3 2.5 ±0.2 1.35 ±0.15 0.3 min. 1.0	1.0			
GRM32C	3.2 ±0.3 2.5	2.0 ±0.2	1.6 ±0.2	0.3 min.	1.0	L W
GRM32R			1.8 ±0.2			
GRM32D			2.0 ±0.2			
GRM32E			2.5 ±0.2			

^{*} Bulk Case : 1.6 ±0.07(L) × 0.8 ±0.07(W) × 0.8 ±0.07(T)

Temperature Compensating Type C0G(5C) Characteristics

Part Number		GRM	02	GRM03	GRM15	
L x W [EIA]		0.4x0.2 [01005]	0.6x0.3 [0201]	1.0x0.5 [0402]	
Rated Volt.		16 (1C)	6.3 (0J)	50 (1H)	50 (1H)	
тс		C0G (5C)	C0G (5C)	C0G (5C)	C0G (5C)	
Capacitance, C	apacitance Tole	erance and T Dimension				
0.10pF(R10)	W, B			0.3(3)	0.5(5)	
0.20pF(R20)	W, B	0.2(2)		0.3(3)	0.5(5)	
0.30pF(R30)	W, B	0.2(2)		0.3(3)	0.5 (5)	
0.40pF(R40)	W, B	0.2(2)		0.3(3)	0.5(5)	
0.50pF(R50)	W, B	0.2(2)		0.3(3)	0.5(5)	
0.60pF(R60)	W, B	0.2(2)		0.3(3)	0.5(5)	
0.70pF(R70)	W, B	0.2(2)		0.3(3)	0.5(5)	
0.80pF(R80)	W, B	0.2(2)		0.3(3)	0.5(5)	
0.90pF(R90)	W, B	0.2(2)		0.3(3)	0.5(5)	
1.0pF(1R0)	W, B, C	0.2(2)		0.3(3)	0.5 (5)	
1.1pF(1R1)	W, B, C	0.2(2)		0.3(3)	0.5 (5)	
1.2pF(1R2)	W, B, C	0.2(2)		0.3(3)	0.5(5)	
1.3pF(1R3)	W, B, C	0.2(2)		0.3(3)	0.5(5)	
1.4pF(1R4)	W, B, C	0.2(2)		0.3(3)	0.5(5)	
1.5pF(1R5)	W, B, C	0.2(2)		0.3(3)	0.5 (5)	
1.6pF(1R6)	W, B, C	0.2(2)		0.3(3)	0.5(5)	
1.7pF(1R7)	W, B, C	0.2(2)		0.3(3)	0.5(5)	
1.8pF(1R8)	W, B, C	0.2(2)		0.3(3)	0.5(5)	
1.9pF(1R9)	W, B, C	0.2(2)		0.3(3)	0.5(5)	
2.0pF(2R0)	W, B, C	0.2(2)		0.3(3)	0.5 (5)	
2.1pF(2R1)	W, B, C	0.2(2)		0.3(3)	0.5(5)	
2.2pF(2R2)	W, B, C	0.2(2)		0.3(3)	0.5(5)	

The part numbering code is shown in ().

Part Number	Title preceding pa	GRM02	2	GRM03	GRM15
L x W [EIA]		0.4x0.2 [01		0.6x0.3 [0201]	1.0x0.5 [0402]
Rated Volt.		16 (1C)	6.3 (0J)	50 (1H)	50 (1H)
гс		C0G (5C)	C0G (5C)	C0G (5C)	C0G (5C)
Capacitance, C	apacitance To	lerance and T Dimension	<u> </u>		
2.3pF(2R3)	W, B, C	0.2(2)		0.3(3)	0.5 (5)
2.4pF(2R4)	W, B, C	0.2(2)		0.3(3)	0.5 (5)
2.5pF(2R5)	W, B, C	0.2(2)		0.3(3)	0.5(5)
2.6pF(2R6)	W, B, C	0.2(2)		0.3(3)	0.5(5)
2.7pF(2R7)	W, B, C	0.2(2)		0.3(3)	0.5 (5)
2.8pF(2R8)	W, B, C	0.2(2)		0.3(3)	0.5(5)
2.9pF(2R9)	W, B, C	0.2(2)		0.3(3)	0.5 (5)
3.0pF(3R0)	W, B, C	0.2(2)		0.3(3)	0.5 (5)
3.1pF(3R1)	W, B, C	0.2(2)		0.3(3)	0.5 (5)
3.2pF(3R2)	W, B, C	0.2(2)		0.3(3)	0.5(5)
3.3pF(3R3)	W, B, C	0.2(2)		0.3(3)	0.5(5)
3.4pF(3R4)	W, B, C	0.2(2)		0.3(3)	0.5(5)
3.5pF(3R5)	W, B, C	0.2(2)		0.3(3)	0.5 (5)
3.6pF(3R6)	W, B, C	0.2(2)		0.3(3)	0.5 (5)
3.7pF(3R7)	W, B, C	0.2(2)		0.3(3)	0.5 (5)
3.8pF(3R8)	W, B, C	0.2(2)		0.3(3)	0.5 (5)
3.9pF(3R9)	W, B, C	0.2(2)		0.3(3)	0.5 (5)
4.0pF(4R0)	W, B, C	0.2(2)		0.3(3)	0.5 (5)
4.1pF(4R1)	W, B, C	0.2(2)		0.3(3)	0.5 (5)
4.2pF(4R2)	W, B, C	0.2(2)		0.3(3)	0.5 (5)
4.3pF(4R3)	W, B, C	0.2(2)		0.3(3)	0.5 (5)
4.4pF(4R4)	W, B, C	0.2(2)		0.3(3)	0.5 (5)
4.5pF(4R5)	W, B, C	0.2(2)		0.3 (3)	0.5 (5)
4.6pF(4R6)	W, B, C	0.2(2)		0.3 (3)	0.5 (5)
4.7pF(4R7)	W, B, C	0.2(2)		0.3(3)	0.5 (5)
4.8pF(4R8)	W, B, C	0.2(2)		0.3 (3)	0.5 (5)
4.9pF(4R9)	W, B, C	0.2(2)		0.3 (3)	0.5 (5)
5.0pF(5R0)	W, B, C	0.2(2)		0.3(3)	0.5 (5)
5.1pF(5R1)	W, B, C, D	0.2(2)		0.3(3)	0.5 (5)
5.2pF(5R2)	W, B, C, D	0.2(2)		0.3(3)	0.5 (5)
5.3pF(5R3)	W, B, C, D	0.2(2)		0.3 (3)	0.5 (5)
5.4pF(5R4)	W, B, C, D	0.2 (2)		0.3(3)	0.5 (5)
5.5pF(5R5)	W, B, C, D	0.2(2)		0.3(3)	0.5 (5)
5.6pF(5R6)	W, B, C, D	0.2(2)		0.3(3)	0.5 (5)
5.7pF(5R7)	W, B, C, D	0.2(2)		0.3(3)	0.5 (5)
5.8pF(5R8)	W, B, C, D	0.2(2)		0.3(3)	0.5 (5)
5.9pF(5R9)	W, B, C, D	0.2(2)		0.3(3)	0.5(5)
6.0pF(6R0)	W, B, C, D	0.2(2)		0.3(3)	0.5(5)
6.1pF(6R1)	W, B, C, D	0.2(2)		0.3(3)	0.5(5)
6.2pF(6R2)	W, B, C, D	0.2(2)		0.3(3)	0.5(5)
6.3pF(6R3)	W, B, C, D	0.2(2)		0.3(3)	0.5(5)
6.4pF(6R4)	W, B, C, D	0.2(2)		0.3(3)	0.5(5)
6.5pF(6R5)	W, B, C, D	0.2(2)		0.3(3)	0.5(5)
6.6pF(6R6)	W, B, C, D	0.2(2)		0.3(3)	0.5(5)
6.7pF(6R7)	W, B, C, D	0.2(2)		0.3(3)	0.5(5)
6.8pF(6R8)	W, B, C, D	0.2(2)		0.3(3)	0.5(5)
6.9pF(6R9)	W, B, C, D	0.2(2)		0.3(3)	0.5(5)
/ ()pl /7DA\	W, B, C, D	0.2(2)		0.3(3)	0.5(5)
7.0pF(7R0) 7.1pF(7R1)	W, B, C, D	0.2(2)		0.3(3)	0.5 (5)

The part numbering code is shown in $\,$ ().

Part Number		GRM02		GRM03	GRM15
x W [EIA]		0.4x0.2 [010	05]	0.6x0.3 [0201]	1.0x0.5 [0402]
Rated Volt.		16 (1C)	6.3 (0J)	50 (1H)	50 (1H)
гс		C0G (5C)	C0G (5C)	C0G (5C)	C0G (5C)
Capacitance, C	·	e Tolerance and T Dimension			
7.3pF(7R3)	W, B, C, D	0.2(2)		0.3 (3)	0.5 (5)
7.4pF(7R4)	W, B, C, D	0.2(2)		0.3 (3)	0.5 (5)
7.5pF(7R5)	W, B, C, D	0.2(2)		0.3 (3)	0.5 (5)
7.6pF(7R6)	W, B, C, D	0.2(2)		0.3(3)	0.5 (5)
7.7pF(7R7)	W, B, C, D	0.2(2)		0.3(3)	0.5 (5)
7.8pF(7R8)	W, B, C, D	0.2(2)		0.3(3)	0.5(5)
7.9pF(7R9)	W, B, C, D	0.2(2)		0.3(3)	0.5(5)
8.0pF(8R0)	W, B, C, D	0.2(2)		0.3(3)	0.5(5)
8.1pF(8R1)	W, B, C, D	0.2(2)		0.3(3)	0.5(5)
8.2pF(8R2)	W, B, C, D	0.2(2)		0.3(3)	0.5(5)
8.3pF(8R3)	W, B, C, D	0.2(2)		0.3(3)	0.5(5)
8.4pF(8R4) 8.5pF(8R5)	W, B, C, D	0.2(2) 0.2(2)		0.3(3) 0.3(3)	0.5(5)
8.6pF(8R6)	W, B, C, D	0.2(2)		0.3(3)	0.5(5)
8.7pF(8R7)	W, B, C, D	0.2(2)		0.3(3)	0.5(5)
8.8pF(8R8)	W, B, C, D	0.2(2)		0.3(3)	0.5(5)
8.9pF(8R9)	W, B, C, D	0.2(2)		0.3(3)	0.5(5)
9.0pF(9R0)	W, B, C, D	0.2(2)		0.3(3)	0.5(5)
9.1pF(9R1)	W, B, C, D	0.2(2)		0.3(3)	0.5(5)
9.2pF(9R2)	W, B, C, D	0.2(2)		0.3(3)	0.5(5)
9.3pF(9R3)	W, B, C, D	0.2(2)		0.3(3)	0.5(5)
9.4pF(9R4)	W, B, C, D	0.2(2)		0.3(3)	0.5(5)
9.5pF(9R5)	W, B, C, D	0.2(2)		0.3(3)	0.5(5)
9.6pF(9R6)	W, B, C, D	0.2(2)		0.3(3)	0.5(5)
9.7pF(9R7)	W, B, C, D	0.2(2)		0.3(3)	0.5(5)
9.8pF(9R8)	W, B, C, D	0.2(2)		0.3(3)	0.5(5)
9.9pF(9R9)	W, B, C, D	0.2(2)		0.3(3)	0.5(5)
10pF(100)	J	0.2(2)		0.3(3)	0.5(5)
12pF(120)	J	0.2(2)		0.3(3)	0.5(5)
15pF(150)	J	0.2(2)		0.3(3)	0.5 (5)
18pF(180)	J	0.2(2)		0.3(3)	0.5 (5)
22pF(220)	J	0.2(2)		0.3 (3)	0.5(5)
27pF(270)	J	0.2(2)		0.3(3)	0.5(5)
33pF(330)	J	0.2(2)		0.3(3)	0.5(5)
39pF(390)	J	0.2(2)		0.3(3)	0.5 (5)
47pF(470)	J	0.2(2)		0.3(3)	0.5 (5)
56pF(560)	J		0.2(2)	0.3(3)	0.5 (5)
68pF(680)	J		0.2 (2)	0.3(3)	0.5 (5)
82pF(820)	J		0.2(2)	0.3(3)	0.5 (5)
100pF(101)	J		0.2(2)	0.3(3)	0.5 (5)
120pF(121)	J				0.5 (5)
150pF(151)	J				0.5 (5)
180pF(181)	J				0.5 (5)
220pF(221)	J				0.5 (5)
270pF(271)	J				0.5 (5)
330pF(331)	J				0.5 (5)
390pF(391)	J				0.5 (5)
470pF(471)	J				0.5 (5)
560pF(561)	J				0.5 (5)
680pF(681)	J				0.5 (5)

muRata

The part numbering code is shown in $\,$ ().

Part Number		GRM02		GRM03	GRM15	
L x W [EIA]		0.4x0.2 [01	005]	0.6x0.3 [0201]	1.0x0.5 [0402]	
Rated Volt.		16 (1C)	6.3 (0J)	50 (1H)	50 (1H)	
тс		C0G (5C)	C0G (5C)	C0G (5C)	C0G (5C)	
Capacitance, Cap	pacitanc	e Tolerance and T Dimension				
820pF(821)	J				0.5 (5)	
1000pF(102)	J				0.5(5)	

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

Part Number		GR	M18	GR	RM21	GRI	M31
L x W [EIA]		1.6x0.8	3 [0603]	2.0 x1.2	25 [0805]	3.2x1.6 [1206]	
Rated Volt.		100 (2A)	50 (1H)	100 (2A)	50 (1H)	100 (2A)	50 (1H)
тс		C0G (5C)					
Capacitance, Ca	pacitance	Tolerance and T	Dimension				
0.10pF(R10)	В		0.8(8)				
0.20pF(R20)	В		0.8(8)				
0.30pF(R30)	С		0.8(8)				
0.40pF(R40)	С		0.8(8)				
0.50pF(R50)	С	0.8 (8)	0.8(8)				
0.60pF(R60)	С	0.8 (8)	0.8(8)				
0.70pF(R70)	С	0.8 (8)	0.8(8)				
0.80pF(R80)	С	0.8(8)	0.8(8)				
0.90pF(R90)	С	0.8 (8)	0.8(8)				
1.0pF(1R0)	С	0.8 (8)	0.8(8)				
2.0pF(2R0)	С	0.8(8)	0.8(8)				
3.0pF(3R0)	С	0.8(8)	0.8(8)				
4.0pF(4R0)	С	0.8(8)	0.8(8)				
5.0pF(5R0)	С	0.8(8)	0.8(8)				
6.0pF(6R0)	D	0.8(8)	0.8(8)				
7.0pF(7R0)	D	0.8(8)	0.8(8)				
8.0pF(8R0)	D	0.8(8)	0.8(8)				
9.0pF(9R0)	D	0.8(8)	0.8(8)				
10pF(100)	J	0.8(8)	0.8(8)				
12pF(120)	J	0.8(8)	0.8(8)				
15pF(150)	J	0.8(8)	0.8(8)				
18pF(180)	J	0.8(8)	0.8(8)				
22pF(220)	J	0.8(8)	0.8(8)				
27pF(270)	J	0.8(8)	0.8(8)				
33pF(330)	J	0.8(8)	0.8(8)				
39pF(390)	J	0.8(8)	0.8(8)				
47pF(470)	J	0.8(8)	0.8(8)				
56pF(560)	J	0.8(8)	0.8(8)				
68pF(680)	J	0.8(8)	0.8(8)				
82pF(820)	J	0.8(8)	0.8(8)				
100pF(101)	J	0.8(8)	0.8(8)				
120pF(121)	J	0.8(8)	0.8(8)				
150pF(151)	J	0.8(8)	0.8(8)				
180pF(181)	J	0.8(8)	0.8(8)				
220pF(221)	J	0.8(8)	0.8(8)				
270pF(271)	J	0.8(8)	0.8(8)				
330pF(331)	J	0.8(8)	0.8(8)				

The part numbering code is shown in $\,$ ().

Part Number	Part Number		M18	GF	RM21	GRM31		
L x W [EIA]		1.6x0.8	3 [0603]	2.0 x1.	25 [0805]	3.2x1.6	[1206]	
Rated Volt.		100 (2A)	50 (1H)	100 (2A)	50 (1H)	100 (2A)	50 (1H)	
тс		C0G (5C)						
Capacitance, Ca	pacitano	e Tolerance and T D	imension					
390pF(391)	J	0.8(8)	0.8(8)					
470pF(471)	J	0.8(8)	0.8(8)					
560pF(561)	J	0.8(8)	0.8(8)					
680pF(681)	J	0.8(8)	0.8(8)					
820pF(821)	J	0.8(8)	0.8(8)					
1000pF(102)	J	0.8(8)	0.8(8)					
1200pF(122)	J	0.8(8)	0.8(8)					
1500pF(152)	J	0.8(8)	0.8(8)					
1800pF(182)	J		0.8(8)	0.6(6)				
2200pF(222)	J		0.8(8)	0.6(6)				
2700pF(272)	J		0.8(8)	0.6(6)				
3300pF(332)	J		0.8(8)	0.6(6)				
3900pF(392)	J		0.8(8)			0.85(9)		
4700pF(472)	J				0.6(6)	0.85(9)		
5600pF(562)	J				0.85(9)	0.85(9)		
6800pF(682)	J				0.85(9)	0.85(9)		
8200pF(822)	J				0.85(9)	0.85(9)		
10000pF(103)	J				0.85(9)	0.85(9)		
12000pF(123)	J				0.85(9)			
15000pF(153)	J				0.85(9)			
18000pF(183)	J				1.25(B)			
22000pF(223)	J				1.25(B)			
27000pF(273)	J						0.85(9)	
33000pF(333)	J						0.85(9)	
39000pF(393)	J						0.85(9)	
47000pF(473)	J						1.15(M)	
56000pF(563)	J						1.15(M)	
68000pF(683)	J						1.6(C)	
82000pF(823)	J						1.6(C)	
0.10μF(104)	J						1.6(C)	

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

Temperature Compensating Type C0G(5C) Characteristics Low Profile

Part Number		GRM15			
L x W [EIA]		1.0x0.5 [0402]			
Rated Volt.		50 (1H)			
тс		C0G (5C)			
Capacitance, Ca	pacitano	te Tolerance and T Dimension			
120pF(121)	J	0.3(3)			
150pF(151)	J	0.3(3)			
180pF(181)	J	0.3(3)			
220pF(221)	J	0.3(3)			
270pF(271)	J	0.3(3)			
330pF(331)	J	0.3(3)			
390pF(391)	J	0.3(3)			

The part numbering code is shown in $\ (\).$

		31.5
Part Number		GRM15
L x W [EIA]		1.0x0.5 [0402]
Rated Volt.		50 (1H)
тс		C0G (5C)
Capacitance, Capacitance Tolerance and T Dimension		e Tolerance and T Dimension
470pF(471)	J	0.3(3)

The part numbering code is shown in ().

Temperature Compensating Type U2J(7U) Characteristics

Part Number		GR	M03	GR	M15	GR	M18	GF	RM21	GRM31
L x W [EIA]		0.6x0.3 [0201]		1.0x0.5	[0402]	1.6x0.8	3 [0603]	2.0x1.2	25 [0805]	3.2x1.6 [1206]
Rated Volt.		50 (1H)	25 (1E)	50 (1H)	10 (1A)	50 (1H)	10 (1A)	50 (1H)	10 (1A)	50 (1H)
тс		U2J (7U)								
Capacitance, Ca	pacitano	ce Tolerance a	and T Dimens	ion						
1.0pF(1R0)	С	0.3(3)		0.5(5)		0.8(8)				
2.0pF(2R0)	С	0.3(3)		0.5(5)		0.8(8)				
3.0pF(3R0)	С	0.3(3)		0.5(5)		0.8(8)				
4.0pF(4R0)	С	0.3(3)		0.5(5)		0.8(8)				
5.0pF(5R0)	С	0.3(3)		0.5(5)		0.8(8)				
6.0pF(6R0)	D	0.3(3)		0.5(5)		0.8(8)				
7.0pF(7R0)	D	0.3(3)		0.5(5)		0.8(8)				
8.0pF(8R0)	D	0.3(3)		0.5(5)		0.8(8)				
9.0pF(9R0)	D	0.3(3)		0.5(5)		0.8(8)				
10pF(100)	J	0.3(3)		0.5(5)		0.8(8)				
12pF(120)	J	0.3(3)		0.5(5)		0.8(8)				
15pF(150)	J	0.3(3)		0.5(5)		0.8(8)				
18pF(180)	J		0.3(3)	0.5(5)		0.8(8)				
22pF(220)	J		0.3(3)	0.5(5)		0.8(8)				
27pF(270)	J		0.3(3)	0.5(5)		0.8(8)				
33pF(330)	J		0.3(3)	0.5(5)		0.8(8)				
39pF(390)	J		0.3(3)	0.5(5)		0.8(8)				
47pF(470)	J		0.3(3)	0.5(5)		0.8(8)				
56pF(560)	J		0.3(3)	0.5(5)		0.8(8)				
68pF(680)	J		0.3(3)	0.5(5)		0.8(8)				
82pF(820)	J		0.3(3)	0.5(5)		0.8(8)				
100pF(101)	J		0.3(3)	0.5(5)		0.8(8)				
120pF(121)	J			0.5(5)		0.8(8)				
150pF(151)	J			0.5(5)		0.8(8)				
180pF(181)	J			0.5(5)		0.8(8)				
220pF(221)	J					0.8(8)				
270pF(271)	J					0.8(8)				
330pF(331)	J					0.8(8)				
390pF(391)	J					0.8(8)				
470pF(471)	J					0.8(8)				
560pF(561)	J					0.8(8)				
680pF(681)	J					0.8(8)				
1000pF(102)	J					0.8(8)				
1200pF(122)	J				0.5(5)	0.8(8)				
1500pF(152)	J				0.5(5)	0.8(8)				
1800pF(182)	J				0.5(5)	0.8(8)				

The part numbering code is shown in $\ (\).$

Dimensions are shown in mm and Rated Voltage in Vdc.

Part Number		GRI	M03	GR	M15	GRM18		GR	M21	GRM31
L x W [EIA]		0.6x0.3	[0201]	1.0x0.5	[0402]	1.6x0.8	3 [0603]	2.0x1.2	5 [0805]	3.2x1.6 [1206
Rated Volt.		50 (1H)	25 (1E)	50 (1H)	10 (1A)	50 (1H)	10 (1A)	50 (1H)	10 (1A)	50 (1H)
тс		U2J (7U)								
Capacitance, Ca	pacitano	e Tolerance a	nd T Dimensi	ion				1		
2200pF(222)	J				0.5(5)	0.8(8)				
2700pF(272)	J				0.5(5)	0.8(8)				
3300pF(332)	J				0.5(5)	0.8(8)				
3900pF(392)	J				0.5(5)	0.8(8)				
4700pF(472)	J				0.5(5)	0.8(8)				
5600pF(562)	J					0.8(8)				
6800pF(682)	J					0.8(8)				
8200pF(822)	J					0.8(8)				
10000pF(103)	J					0.8(8)				
12000pF(123)	J						0.8(8)	0.6(6)		
15000pF(153)	J						0.8(8)	0.6(6)		
18000pF(183)	J						0.8(8)	0.6(6)		
22000pF(223)	J						0.8(8)	0.85(9)		
27000pF(273)	J							0.85(9)		
33000pF(333)	J							1.0(A)		
39000pF(393)	J							1.25(B)		
47000pF(473)	J							1.25(B)		
56000pF(563)	J								0.85(9)	0.85(9)
68000pF(683)	J								1.25(B)	1.15(M)
82000pF(823)	J								1.25(B)	1.15(M)
0.10μF(104)	J								1.25(B)	1.15(M)

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

Temperature Compensating Type P2H(6P) Characteristics

Part Number		GRM15	GRM18
L x W [EIA]		1.0x0.5 [0402]	1.6x0.8 [0603]
Rated Volt.		50 (1H)	50 (1H)
тс		P2H (6P)	P2H (6P)
Capacitance, Ca	pacitano	ce Tolerance and T Dimension	
1.0pF(1R0)	С	0.5(5)	0.8(8)
2.0pF(2R0)	С	0.5(5)	0.8(8)
3.0pF(3R0)	С	0.5(5)	0.8(8)
4.0pF(4R0)	С	0.5(5)	0.8(8)
5.0pF(5R0)	С	0.5(5)	0.8(8)
6.0pF(6R0)	D	0.5(5)	0.8(8)
7.0pF(7R0)	D	0.5(5)	0.8(8)
8.0pF(8R0)	D	0.5(5)	0.8(8)
9.0pF(9R0)	D	0.5(5)	0.8(8)
10pF(100)	J	0.5(5)	0.8(8)
12pF(120)	J	0.5(5)	0.8(8)
15pF(150)	J	0.5(5)	0.8(8)
18pF(180)	J	0.5(5)	0.8(8)
22pF(220)	J	0.5(5)	0.8(8)
27pF(270)	J	0.5(5)	0.8(8)
33pF(330)	J		0.8(8)

The part numbering code is shown in $\ (\).$

Part Number		GRM15	GRM18
L x W [EIA]		1.0x0.5 [0402]	1.6x0.8 [0603]
Rated Volt.		50 (1H)	50 (1H)
тс		P2H (6P)	P2H (6P)
Capacitance, Ca	pacitano	e Tolerance and T Dimension	
39pF(390)	J		0.8(8)
47pF(470)	J		0.8(8)
56pF(560)	J		0.8(8)
68pF(680)	J		0.8(8)
82pF(820)	J		0.8(8)
100pF(101)	J		0.8(8)
120pF(121)	J		0.8(8)
150pF(151)	J		0.8(8)

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

Temperature Compensating Type R2H(6R) Characteristics

Part Number		GRM03	GRM15	GRM18
L x W [EIA]		0.6x0.3 [0201]	1.0x0.5 [0402]	1.6x0.8 [0603]
Rated Volt.		25 (1E)	50 (1H)	50 (1H)
тс		R2H (6R)	R2H (6R)	R2H (6R)
Capacitance, Ca	pacitance To	lerance and T Dimension		
1.0pF(1R0)	С	0.3(3)	0.5(5)	0.8(8)
2.0pF(2R0)	С	0.3(3)	0.5(5)	0.8(8)
3.0pF(3R0)	С	0.3(3)	0.5(5)	0.8(8)
4.0pF(4R0)	С	0.3(3)	0.5(5)	0.8(8)
5.0pF(5R0)	С	0.3(3)	0.5(5)	0.8(8)
6.0pF(6R0)	D	0.3(3)	0.5(5)	0.8(8)
7.0pF(7R0)	D	0.3(3)	0.5(5)	0.8(8)
8.0pF(8R0)	D	0.3 (3)	0.5(5)	0.8(8)
9.0pF(9R0)	D	0.3 (3)	0.5(5)	0.8(8)
10pF(100)	J	0.3 (3)	0.5(5)	0.8(8)
12pF(120)	J	0.3(3)	0.5(5)	0.8(8)
15pF(150)	J	0.3(3)	0.5(5)	0.8(8)
18pF(180)	J	0.3(3)	0.5(5)	0.8(8)
22pF(220)	J	0.3(3)	0.5(5)	0.8(8)
27pF(270)	J	0.3(3)	0.5(5)	0.8(8)
33pF(330)	J	0.3(3)	0.5(5)	0.8(8)
39pF(390)	J	0.3(3)		0.8(8)
47pF(470)	J	0.3(3)		0.8(8)
56pF(560)	J	0.3(3)		0.8(8)
68pF(680)	J	0.3(3)		0.8(8)
82pF(820)	J	0.3(3)		0.8(8)
100pF(101)	J	0.3(3)		0.8(8)
120pF(121)	J			0.8(8)
150pF(151)	J			0.8(8)
180pF(181)	J			0.8(8)

The part numbering code is shown in ().

Temperature Compensating Type S2H(6S) Characteristics

Part Number		GRM03	GRM15	GRM18
L x W [EIA]		0.6x0.3 [0201]	1.0x0.5 [0402]	1.6x0.8 [0603]
Rated Volt.		25 (1E)	50 (1H)	50 (1H)
тс		S2H (6S)	S2H (6S)	S2H (6S)
Capacitance, Ca	pacitance	e Tolerance and T Dimension		
1.0pF(1R0)	С	0.3 (3)	0.5(5)	0.8(8)
2.0pF(2R0)	С	0.3 (3)	0.5(5)	0.8(8)
3.0pF(3R0)	С	0.3(3)	0.5 (5)	0.8(8)
4.0pF(4R0)	С	0.3 (3)	0.5 (5)	0.8(8)
5.0pF(5R0)	С	0.3(3)	0.5 (5)	0.8(8)
6.0pF(6R0)	D	0.3(3)	0.5 (5)	0.8(8)
7.0pF(7R0)	D	0.3(3)	0.5 (5)	0.8(8)
8.0pF(8R0)	D	0.3(3)	0.5 (5)	0.8(8)
9.0pF(9R0)	D	0.3 (3)	0.5 (5)	0.8(8)
10pF(100)	J	0.3(3)	0.5 (5)	0.8(8)
12pF(120)	J	0.3 (3)	0.5 (5)	0.8(8)
15pF(150)	J	0.3 (3)	0.5 (5)	0.8(8)
18pF(180)	J	0.3 (3)	0.5 (5)	0.8(8)
22pF(220)	J	0.3(3)	0.5(5)	0.8(8)
27pF(270)	J	0.3(3)	0.5(5)	0.8(8)
33pF(330)	J	0.3(3)	0.5(5)	0.8(8)
39pF(390)	J	0.3(3)	0.5(5)	0.8(8)
47pF(470)	J	0.3(3)		0.8(8)
56pF(560)	J	0.3(3)		0.8(8)
68pF(680)	J	0.3(3)		0.8(8)
82pF(820)	J	0.3(3)		0.8(8)
100pF(101)	J	0.3(3)		0.8(8)
120pF(121)	J			0.8(8)
150pF(151)	J			0.8(8)
180pF(181)	J			0.8(8)
220pF(221)	J			0.8(8)

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

Temperature Compensating Type T2H(6T) Characteristics

Part Number	Ance, Capacitance F(1R0) C F(2R0) C F(3R0) C F(4R0) C F(5R0) C F(6R0) D F(7R0) D	GRM03	GRM15	GRM18
L x W [EIA]	[EIA] Volt. citance, Capacitance T 0pF(1R0) C 0pF(2R0) C 0pF(3R0) C 0pF(4R0) C 0pF(5R0) C	0.6x0.3 [0201]	1.0x0.5 [0402]	1.6x0.8 [0603]
Rated Volt.	ance, Capacitance F(1R0) C F(2R0) C F(3R0) C F(4R0) C	25 (1E)	50 (1H)	50 (1H)
тс	(1R0) C (2R0) C	T2H (6T)	T2H (6T)	T2H (6T)
Capacitance, Ca	1.0pF(1R0) C 2.0pF(2R0) C 3.0pF(3R0) C	ce Tolerance and T Dimension		
1.0pF(1R0)	1.0pF(1R0) C	0.3(3)	0.5(5)	0.8(8)
2.0pF(2R0)	С	0.3(3)	0.5(5)	0.8(8)
3.0pF(3R0)	С	0.3(3)	0.5(5)	0.8(8)
4.0pF(4R0)	С	0.3(3)	0.5(5)	0.8(8)
5.0pF(5R0)	С	0.3(3)	0.5(5)	0.8(8)
6.0pF(6R0)	D	0.3(3)	0.5(5)	0.8(8)
7.0pF(7R0)	D	0.3(3)	0.5(5)	0.8(8)
8.0pF(8R0)	D	0.3(3)	0.5(5)	0.8(8)

The part numbering code is shown in ().

Part Number		GRM03	GRM15	GRM18
L x W [EIA]		0.6x0.3 [0201]	1.0x0.5 [0402]	1.6x0.8 [0603]
Rated Volt.		25 (1E)	50 (1H)	50 (1H)
тс		T2H (6T)	T2H (6T)	Т2Н (6Т)
Capacitance, Ca	pacitano	e Tolerance and T Dimension		
9.0pF(9R0)	D	0.3(3)	0.5 (5)	0.8(8)
10pF(100)	J	0.3(3)	0.5 (5)	0.8(8)
12pF(120)	J	0.3(3)	0.5 (5)	0.8(8)
15pF(150)	J	0.3(3)	0.5 (5)	0.8(8)
18pF(180)	J	0.3(3)	0.5 (5)	0.8(8)
22pF(220)	J	0.3(3)	0.5 (5)	0.8(8)
27pF(270)	J	0.3(3)	0.5 (5)	0.8(8)
33pF(330)	J	0.3(3)	0.5 (5)	0.8(8)
39pF(390)	J	0.3(3)	0.5 (5)	0.8(8)
47pF(470)	J	0.3(3)	0.5 (5)	0.8(8)
56pF(560)	J	0.3(3)	0.5 (5)	0.8(8)
68pF(680)	J	0.3(3)	0.5 (5)	0.8(8)
82pF(820)	J	0.3(3)	0.5 (5)	0.8(8)
100pF(101)	J	0.3(3)	0.5 (5)	0.8(8)
120pF(121)	J			0.8(8)
150pF(151)	J			0.8(8)
180pF(181)	J			0.8(8)
220pF(221)	J			0.8(8)
270pF(271)	J			0.8(8)
330pF(331)	J			0.8(8)
390pF(391)	J			0.8(8)
470pF(471)	J			0.8(8)

The part numbering code is shown in $\ (\).$

sales representatives or product engineers before ordering.

• This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

Chip Monolithic Ceramic Capacitors

for General Purpose GRM Series (High Dielectric Constant Type)

■ Features

- 1. Highter resistance of solder-leaching due to the Ni-barriered termination, applicable for reflow-soldering, and flow-soldering (GRM18/21/31 type only).
- 2. The GRM series is lead free product.
- 3. Smaller size and higher capacitance value.
- 4. High reliability and no polarity.
- 5. Excellent pulse responsibility and noise reduction due to the low impedance at high frequency.
- 6. The GRM series is available in paper or embossed tape and reel packaging for automatic placement. Bulk case packaging is also available for GRM15/18/21(T=0.6,1.25).
- 7. Ta replacement.

	Applications
--	---------------------

General electronic equipment

		Din	nensions	(mm)		
Part Number	L	w	Т	е	g min.	
GRM022	0.4 ±0.02	0.2 ±0.02	0.2 ±0.02	0.07 to 0.14	0.13	
GRM033	0.6 ±0.03	0.3 ±0.03	0.3 ±0.03	0.1 to 0.2	0.2	
GRM15X			0.25 ±0.05	0.1 to 0.3	0.4	-
GRM153	1.0 ±0.05	0.5 ±0.05	0.3 ±0.03	0.1 10 0.3	0.4	() () ()
GRM155			0.5 ±0.05	0.15 to 0.35	0.3	
GRM185	1.6 ±0.1	0.8 ±0.1	0.5 +0/-0.1	0.2 to 0.5	0.5	
GRM188*	1.0 ±0.1	0.6 ±0.1	0.8 ±0.1	0.2 10 0.5	0.5	
GRM216			0.6 ±0.1			
GRM219	2.0 ±0.1	1.25 ±0.1	0.85 ±0.1	0.2 to 0.7	0.7	
GRM21A	2.0 ±0.1	1.25 ±0.1	1.0 +0/-0.2	0.2 10 0.7	0.7	
GRM21B			1.25 ±0.1			
GRM316			0.6 ±0.1			
GRM319	3.2 ±0.15	1.6 ±0.15	0.85 ±0.1	0.3 to 0.8	1.5	e g e
GRM31M			1.15 ±0.1	0.3 10 0.6	1.5	
GRM31C	3.2 ±0.2	1.6 ±0.2	1.6 ±0.2			
GRM329			0.85 ±0.1			
GRM32A			1.0 +0/-0.2			
GRM32M			1.15 ±0.1			
GRM32N	3.2 ±0.3	2.5 +0.2	1.35 ±0.15	0.3 min.	1.0	
GRM32C	3.2 ±0.3	2.0 ±0.2	1.6 ±0.2	U.S MIN.	1.0	L W
GRM32R			1.8 ±0.2			
GRM32D			2.0 ±0.2			
GRM32E			2.5 ±0.2			

^{*} Bulk Case: 1.6 ±0.07(L) X 0.8 ±0.07(W) X 0.8 ±0.07(T)

High Dielectric Constant Type X5R(R6) Characteristics

Part Number		GR	M02	GR	M03	(GRM1	5		(RM1	В		(GRM2	1		GR	M31		GRI	M32
L x W [EIA]		0.4x0.2	[01005]	0.6x0.3	3 [0201]	1.0x	0.5 [0	402]		1.6x	0.8 [0	603]		2x1	1.25 [8	05]	3	.2x1.6	[120	6]	3.2x2.5	[1210]
Rated Volt.		10 (1A)	6.3 (0J)	10 (1A)	6.3 (0J)	50 (1H)	16 (1C)	10 (1A)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	6.3 (0J)	25 (1E)	16 (1C)	6.3 (0J)	50 (1H)	25 (1E)	16 (1C)	6.3 (0J)	25 (1E)	16 (1C)
тс		X5R (R6)			X5R (R6)				X5R (R6)				X5R (R6)									
Capacitance, Ca	pacitan	ce Tole	erance	and	T Dim	ensior	ו															
68pF (680)	к	0.2 (2)																				
100pF (101)	к	0.2 (2)																				
150pF (151)	К	0.2 (2)																				
220pF (221)	К	0.2 (2)																				
330pF (331)	К	0.2 (2)																				
470pF (471)	К	0.2 (2)																				
680pF (681)	К		0.2* (2)																			
1000pF (102)	К		0.2* (2)			0.5 (5)			0.8 (8)													
1500pF (152)	к		0.2* (2)	0.3 (3)																		

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

GRM21B Series $6.3V/22\mu F$ (L: 2.0 ± 0.15 , W: 1.25 ± 0.15 , T: 1.25 ± 0.15 mm)

GRM31C Series 6.3V/100µF (L: 3.2±0.3, W: 1.6±0.3, T: 1.6±0.3mm)

^{*:} Please refer to GRM Series Specifications and Test Methods (2) (P.29).

^{**:} In case of Rated Volt.6.3V. Capacitance Tolerance should be M.

(**C**)

Part Number		GR	M02	GR	M03		GRM1	5			SRM1	8		(3RM2	1		GR	M31		GRI	M32
L x W [EIA]		0.4x0.2	[01005]	0.6x0.3	3 [0201]	1.0x	0.5 [0	402]		1.6x	0.8 [0	603]		2x1	.25 [8	305]	3	.2x1.6	[120	6]	3.2x2.5	[1210
Rated Volt.		10 (1A)	6.3 (0J)	10 (1A)	6.3 (0J)	50 (1H)	16 (1C)	10 (1A)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	6.3 (0J)	25 (1E)	16 (1C)	6.3 (0J)	50 (1H)	25 (1E)	16 (1C)	6.3 (0J)	25 (1E)	16 (1C
тс		X5R (R6)	X5R (R6)	X5R (R6)	X5R (R6)	X5R (R6)	X5R (R6)	X5R (R6)	X5R (R6)	X5F (R6												
Capacitance, Ca	apacitan	ce Tole	erance	and	T Dim	ensio	n															
2200pF (222)	к		0.2* (2)	0.3 (3)		0.5 (5)			0.8 (8)													
3300pF (332)	к		0.2* (2)	0.3 (3)																		
4700pF (472)	к		0.2* (2)	0.3 (3)		0.5 (5)			0.8 (8)													
6800pF (682)	к		0.2* (2)	0.3 (3)																		
10000pF (103)	к		0.2* (2)	0.3 (3)			0.5 (5)		0.8 (8)													
15000pF (153)	к				0.3* (3)																	
22000pF (223)	к				0.3* (3)		0.5 (5)		0.8													
33000pF (333)	к				0.3* (3)		0.5 (5)															
47000pF (473)	к				0.3* (3)		0.5 (5)															
68000pF (683)	к				0.3* (3)		0.5 (5)															
0.10μF (104)	к				0.3* (3)		0.5 (5)			0.8 (8)												
0.15μF (154)	к							0.5* (5)				0.8										
0.22μF (224)	к							0.5* (5)		0.8 (8)												
0.33μF (334)	к							0.5* (5)														
0.47μF (474)	к							0.5* (5)		0.8* (8)												
0.68μF (684)	к							0.5* (5)														
1μF (105)	к							0.5* (5)		0.8* (8)												
2.2μF (225)	к										0.8* (8)			1.25* (B)			1.6 (C)					
4.7μF (475)	к												0.8*	1.25* (B)								
10μF (106)	K, M**												0.8*		1.25* (B)			1.6* (C)				
22μF (226)	М															1.25* (B)			1.6* (C)		2.5* (E)	
47μF (476)	М																			1.6* (C)		2.5 ³
100μF (107)	м																			1.6*		

The part numbering code is shown in ().

(107)

Dimensions are shown in mm and Rated Voltage in Vdc.

GRM21B Series $6.3V/22\mu F$ (L: 2.0 ± 0.15 , W: 1.25 ± 0.15 , T: $1.25\pm0.15mm$)

GRM31C Series $6.3V/100\mu F$ (L: 3.2 ± 0.3 , W: 1.6 ± 0.3 , T: 1.6 ± 0.3 mm)

^{*:} Please refer to GRM Series Specifications and Test Methods (2) (P.29).

 $^{^{\}star\star}$: In case of Rated Volt.6.3V, Capacitance Tolerance should be M.

High Dielectric Constant Type X6S/X6T(C8/D8) Characteristics

Part Number		GRI	M03	GR	M15	GR	M18		GRM21			GRM31		GR	M32
L x W [EIA]		0.6x0.3	[0201]	1.0x0.5	[0402]	1.6x0.8	[0603]	2.0	x1.25 [08	305]	3.2	2x1.6 [12	06]	3.2x2.5	[1210]
Rated Volt.		6.3 (0J)	4 (0G)	6.3 (0J)	4 (0G)	10 (1A)	4 (0G)	25 (1E)	10 (1A)	4 (0G)	10 (1A)		4 G)	10 (1A)	6.3 (0J)
тс		X6S (C8)	X6T (D8)	X6S (C8)	X6S (C8)										
Capacitance, Ca	pacitano	ce Tolera	nce and	T Dimens	sion										
15000pF(153)	K	0.3*(3)													
22000pF(223)	K	0.3*(3)													
33000pF(333)	K	0.3*(3)													
47000pF(473)	K	0.3*(3)													
0.10μF(104)	K		0.3*(3)												
0.15μF(154)	K			0.5*(5)											
0.22μF(224)	K			0.5*(5)											
0.33μF(334)	K			0.5*(5)											
0.47μF(474)	K			0.5*(5)											
0.68μF(684)	K				0.5*(5)										
1.0μF(105)	K				0.5*(5)										
2.2μF(225)	K					0.8*(8)									
4.7μF(475)	K						0.8*(8)	1.25*(B)							
10μF(106)	K								1.25*(B)						
22μF(226)	М									1.25*(B)	1.6*(C)				
47μF(476)	М											1.6*(C)		2.5*(E)	
100μF(107)	М												1.6*(C)		2.5*(E)

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

GRM21B Series $4V/22\mu F$ (L: 2.0 ± 0.15 , W: 1.25 ± 0.15 , T: 1.25 ± 0.15 mm)

GRM31C Series 4V/100 μ F (L: 3.2 \pm 0.3, W: 1.6 \pm 0.3, T: 1.6 \pm 0.3mm)

High Dielectric Constant Type X7R/X7T/X7U(R7/D7/E7) Characteristics

Part Number		GRM 02		RM				M15			G	RM1	18				GR	M21				G	RM	31			G	RM	32	
L x W [EIA]		0.4x0.2 [01005]	0.6x	0.3 [0	0201]	1.0	x0.5	5 [04	02]	1	.6x0	0.8 [0603	3]		2.0	x1.2	5 [08	305]		3	3.2x1	1.6 [1206	5]	3	3.2x2	2.5 [1210)]
Rated Volt.		10 (1A)	25 (1E)	16 (1C)	10 (1A)	100 (2A)	50 (1H)	25 (1E)	16 (1C)	100 (2A)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	100 (2A)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	4 (0G)	100 (2A)	50 (1H)	25 (1E)	10 (1A)	4 (0G)	100 (2A)	50 (1H)	10 (1A)	6.3 (0J)	4 (0G)
тс		X7R (R7)	X7U (E7)	X7R (R7)	X7R (R7)	X7R (R7)	X7R (R7)	X7U (E7)	X7R (R7)	X7R (R7)	X7R (R7)	X7T (D7)	X7U (E7)																	
Capacitance, Ca	pacitan	ce To	lera	nce	and	T Di	men	sion)			•														•			•	
68pF (680)	K	0.2 (2)																												
100pF (101)	K	0.2 (2)	0.3 (3)																											
150pF (151)	K	0.2 (2)	0.3 (3)																											
220pF (221)	K	0.2 (2)	0.3 (3)			0.5 (5)	0.5 (5)			0.8 (8)	0.8 (8)																			
330pF (331)	K	0.2 (2)	0.3 (3)			0.5 (5)	0.5 (5)			0.8 (8)	0.8 (8)																			
470pF (471)	K	0.2 (2)	0.3 (3)			0.5 (5)	0.5 (5)			0.8 (8)	0.8 (8)																			

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

 $\mathsf{GRM21B} \; \mathsf{Series} \; 100 \mathsf{V} / 0.47 \mu\mathsf{F}, \; 25 \mathsf{V} / 2.2 \mu\mathsf{F}, \; 16 \mathsf{V} / 4.7 \mu\mathsf{F}, \; 10 \mathsf{V} / 10 \mu\mathsf{F}, \; 4 \mathsf{V} / 22 \mu\mathsf{F} \; (L: 2.0 \pm 0.15, \, W: \, 1.25 \pm 0.15, \, T: \, 1.25 \pm 0.15 \mathsf{mm})$

GRM31M Series 100V/0.68 μ F, 25V/2.2 μ F (L: 3.2 \pm 0.2, W: 1.6 \pm 0.2, T: 1.15 \pm 0.15mm)

^{*:} Please refer to GRM Series Specifications and Test Methods (2) (P.29).

^{*:} Please refer to GRM Series Specifications and Test Methods (2) (P.29).

Part Number	GRM 02	G	RMO)3		GRI	V115			G	RM1	8				GR	M21			G	RM	31			G	RM3	2	
L x W [EIA]	0.4x0.2 [01005]	0.6x	0.3 [0	201]	1.0	x0.5	[04	02]	1	.6x0	0.8 [0	0603	3]		2.0	κ1.2	5 [08	305]	3	.2x1	.6 [1206	5]	3	3.2x2	2.5 [1	1210)]
Rated Volt.	10 (1A)					50 (1H)			100 (2A)					100 (2A)				10 (1A)	100 (2A)						50 (1H)			
тс	X7R (R7)																											

L x W [EIA]	0.4x0. [01005	2 0.6x	(0.3 [0)201]	1.0	x0.5	[04	02]	1	.6x0	0.8 [0	0603	3]		2.0	κ1.2	5 [08	305]		3	.2x1	.6 [1206	5]	3	3.2x2	2.5 [1210)]
Rated Volt.	10 (1A	25 (1E)	16 (1C)	10 (1A)	100 (2A)	50 (1H)	25 (1E)	16 (1C)	100 (2A)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	100 (2A)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	4 (0G)	100 (2A)	50 (1H)	25 (1E)	10 (1A)	4 (0G)	100 (2A)	50 (1H)	10 (1A)	6.3 (0J)	4 (0G
тс	X7F (R7	X7R (R7)	X7R. (R7)	X7R (R7)	X7R (R7)	X7R (R7)	X7U (E7)	X7R (R7)	X7R (R7)	X7R (R7)	X7R (R7)	X7U (E7)	X7R (R7)	X7R (R7)	X7R (R7)	X7T (D7)	X71 (E7												
Capacitance, Capacit	ance T	olera	nce	and	T Di	men	sion																						
680pF (681)		0.3 (3)			0.5 (5)	0.5 (5)			0.8 (8)	8.0 (8)																			
1000pF (102)		0.3 (3)			0.5 (5)	0.5 (5)			0.8 (8)	8.0 (8)																			
1500pF (152)		0.3 (3)			0.5 (5)	0.5 (5)			0.8 (8)	8.0 (8)																			
2200pF (222) K			0.3 (3)		0.5 (5)	0.5 (5)			0.8 (8)	0.8 (8)																			
3300pF (332)			0.3 (3)		0.5 (5)	0.5 (5)			0.8 (8)	8.0 (8)																			
4700pF (472) K				0.3 (3)	0.5 (5)	0.5 (5)			0.8 (8)	0.8 (8)																			
6800pF (682)				0.3 (3)		0.5 (5)			0.8 (8)	0.8 (8)																			
10000pF (103)				0.3 (3)		0.5 (5)			0.8 (8)	0.8 (8)																			
15000pF (153)						0.5 (5)				0.8 (8)				1.25 (B)															
22000pF (223)						0.5 (5)				0.8 (8)				1.25 (B)															
33000pF (333)							0.5 (5)			0.8 (8)				1.25 (B)															
47000pF (473)							0.5 (5)			0.8 (8)				1.25 (B)															
68000pF (683)								0.5 (5)		0.8 (8)										1.15 (M)									
0.10μF (104)								0.5 (5)	0.8 (8)	0.8 (8)																			
0.15μF (154)											0.8 (8)				1.25 (B)					1.15 (M)									
0.22μF (224)											0.8 (8)			1.0 (A)	1.25 (B)														
0.33μF (334)												0.8 (8)		1.0 (A)	0.85 (9)														
0.47μF (474)											0.8* (8)			1.25 (B)	1.25 (B)														
0.68μF (684)													0.8 (8)			0.85 (9)				1.15 (M)	1.15 (M)								
1.0μF (105)												0.8* (8)			1.25 (B)					1.6 (C)									
2.2μF (225)													0.8* (8)			1.25* (B)						1.15 (M)			2.5 (E)				
4.7μF (475)																	1.25* (B)				1.6 (C)					2.5 (E)			
10μF (106)																		1.25* (B)				1.6* (C)							
22μF (226)																			1.25* (B)				1.6* (C)					1.35 ²	t

The part numbering code is shown in $\ (\).$

Dimensions are shown in mm and Rated Voltage in Vdc.

 $\mathsf{GRM21B} \; \mathsf{Series} \; \mathsf{100V/0.47} \mu\mathsf{F}, \; \mathsf{25V/2.2} \mu\mathsf{F}, \; \mathsf{16V/4.7} \mu\mathsf{F}, \; \mathsf{10V/10} \mu\mathsf{F}, \; \mathsf{4V/22} \mu\mathsf{F} \; (\mathsf{L:}\; 2.0 \pm 0.15, \; \mathsf{W:}\; 1.25 \pm 0.15, \; \mathsf{T:}\; 1.25 \pm 0.15 \mathsf{mm})$

GRM31M Series 100V/0.68 μ F, 25V/2.2 μ F (L: 3.2 \pm 0.2, W: 1.6 \pm 0.2, T: 1.15 \pm 0.15mm)

^{*:} Please refer to GRM Series Specifications and Test Methods (2) (P.29).

Part Number		GRM 02	"	RMO			GRI	VI15			G	RM1	8				GR	M21				G	RM	31			G	RM3	32	
L x W [EIA]		0.4x0.2 [01005]	0.6	:0.3 [0	201]	1.0	x0.5	[04	02]	1	.6x0	0.8 [0	0603	3]		2.0	κ1.2	5 [08	305]		3	.2x1	.6 [1206	5]	3	3.2x2	2.5 [1	1210)]
Rated Volt.		10 (1A)	25 (1E)	16 (1C)	10 (1A)	100 (2A)	50 (1H)	25 (1E)	16 (1C)	100 (2A)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	100 (2A)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	4 (0G)	100 (2A)	50 (1H)	25 (1E)	10 (1 A)	4 (0G)	100 (2A)	50 (1H)	10 (1A)	6.3 (0J)	4 (0G)
тс		X7R (R7)	X7F (R7)	X7R (R7)	X7U (E7)	X7R (R7)	X7R (R7)	X7R (R7)	X7R (R7)	X7U (E7)	X7R (R7)	X7R (R7)	X7R (R7)	X7T (D7)	X7U (E7)															
Capacitance, Ca	pacitan	ce To	olera	nce	and	T Di	men	sion																						
47μF (476)	М																								1.6* (C)			2.5* (E)		
100μF (107)	M																													2.5* (E)

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

GRM21B Series $100V/0.47\mu F$, $25V/2.2\mu F$, $16V/4.7\mu F$, $10V/10\mu F$, $4V/22\mu F$ (L: 2.0 ± 0.15 , W: 1.25 ± 0.15 , T: 1.25 ± 0.15 mm)

GRM31M Series 100V/0.68 μ F, 25V/2.2 μ F (L: 3.2 \pm 0.2, W: 1.6 \pm 0.2, T: 1.15 \pm 0.15mm)

High Dielectric Constant Type Y5V(F5) Characteristics

Part Number			GR	M15		GR	M18	GRM21	GRM31	GRM32
L x W [EIA]			1.0x0.5	5 [0402]		1.6x0.	8 [0603]	2.0x1.25 [0805]	3.2x1.6 [1206]	3.2x2.5 [1210]
Rated Volt.		50 (1H)	25 (1E)	16 (1C)	10 (1A)	50 (1H)	25 (1E)	50 (1H)	6.3 (0J)	100 (2A)
тс		Y5V (F5)								
Capacitance, Ca	pacitano	e Tolerance a	and T Dimensi	on	'		'		l	'
1000pF(102)	Z	0.5(5)				0.8(8)				
2200pF(222)	Z	0.5(5)				0.8(8)				
4700pF(472)	Z	0.5(5)				0.8(8)				
10000pF(103)	Z	0.5(5)				0.8(8)				
22000pF(223)	Z		0.5(5)			0.8(8)				
47000pF(473)	Z		0.5(5)			0.8(8)				
0.10μF(104)	Z		0.5(5)			0.8(8)				1.35(N)
0.22μF(224)	Z			0.5(5)		0.8(8)				
0.47μF(474)	Z			0.5(5)			0.8(8)	0.85(9)		
1.0μF(105)	Z				0.5*(5)					
100μF(107)	Z								1.6*(C)	

The part numbering code is shown in $\ (\).$

Dimensions are shown in mm and Rated Voltage in Vdc.

High Dielectric Constant Type X5R(R6) Characteristics Low Profile

Part Number		GRM15	GRI	M18		GRM21		GR	M31
L x W [EIA]		1.0x0.5 [0402]	1.6x0.8	3 [0603]		2.0x1.25 [0805]	3.2x1.	6 [1206]
Rated Volt.		4 (0G)	16 (1C)	6.3 (0J)	25 (1E)	16 (1C)	10 (1A)	25 (1E)	16 (1C)
тс		X5R (R6)							
Capacitance, Ca	pacitano	e Tolerance an	d T Dimension						
1.0μF(105)	K, M**	0.3*(3)	0.5*(5)		0.6*(6)		0.85(9)		
2.2μF(225)	K			0.5*(5)	0.85*(9)			0.6*(6)	
4.7μF(475)	K					0.85*(9)		0.85*(9)	
10μF(106)	K						0.85*(9)		0.85*(9)

The part numbering code is shown in $\,$ ().

Dimensions are shown in mm and Rated Voltage in Vdc.

GRM219 Series 10V/10 μ F (L: 2.0 \pm 0.2, W: 1.25 \pm 0.2, T: 0.85 \pm 0.1mm)

^{*:} Please refer to GRM Series Specifications and Test Methods (2) (P.29).

^{*:} Please refer to GRM Series Specifications and Test Methods (2) (P.29).

^{*:} Please refer to GRM Series Specifications and Test Methods (2) (P.29).

^{**:} In case of Rated Volt.4V, Capacitance Tolerance should be M.

High Dielectric Constant Type X6S(C8) Characteristics Low Profile

Part Number		GRI	M18		GRM21		GRM31
L x W [EIA]		1.6x0.8	3 [0603]		2.0x1.25 [0805]		3.2x1.6 [1206]
Rated Volt.		10 (1A)	4 (0G)	16 (1C)	10 (1A)	6.3 (0J)	16 (1C)
тс		X6S (C8)					
Capacitance, Ca	pacitan	ce Tolerance and T D	imension			1	
1.0μF(105)	K	0.5*(5)		0.6*(6)			
2.2μF(225)	K		0.5*(5)	0.85*(9)			0.6*(6)
4.7μF(475)	K				0.85*(9)		0.85*(9)
10μF(106)	K					0.85*(9)	

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

GRM219 Series $6.3V/10\mu F$ (L: 2.0 ± 0.2 , W: 1.25 ± 0.2 , T: $0.85\pm0.1mm$)

High Dielectric Constant Type X7R/X7T(R7/D7) Characteristics Low Profile

Part Number			GRM15		GRM18	GRM21
L x W [EIA]			1.0x0.5 [0402]		1.6x0.8 [0603]	2.0x1.25 [0805]
Rated Volt.		50 (1H)	25 (1E)	16 (1C)	10 (1A)	25 (1E)
тс		X7R (R7)	X7R (R7)	X7R (R7)	X7T (D7)	X7R (R7)
Capacitance, Ca	pacitano	e Tolerance and T Dim	nension			
220pF(221)	K	0.25(X)				
330pF(331)	K	0.25(X)				
470pF(471)	K	0.25(X)				
680pF(681)	K	0.25(X)				
1000pF(102)	K	0.25(X)				
1500pF(152)	K	0.25(X)				
2200pF(222)	K		0.25(X)			
3300pF(332)	K			0.25(X)		
4700pF(472)	K			0.25(X)		
6800pF(682)	K			0.25(X)		
10000pF(103)	K			0.25(X)		
1.0μF(105)	K				0.5*(5)	0.85(9)

The part numbering code is shown in ().

^{*:} Please refer to GRM Series Specifications and Test Methods (2) (P.29).

^{*:} Please refer to GRM Series Specifications and Test Methods (2) (P.29).

Below GRM Series Specifications and Test Methods (1) are applied to Non "*" PNs in capacitance table. In case "*" is added in capacitance table, please refer to GRM Series Specifications and Test Methods (2) (P.29).

			cations	The to ONIII defies openications and rest methods (2) (1.23).
No.	Item	Temperature Compensating Type	High Dielectric Type	Test Method
1	Operating Temperature Range	–55 to +125℃	B1, B3, F1: −25 to +85°C R1, R7: −55 to +125°C R6: −55 to +85°C C8: −55 to +105°C E4: +10 to +85°C F5: −30 to +85°C	Reference temperature: 25° C (2Δ , 3Δ , 4Δ , B1, B3, F1, R1: 20° C)
2	Rated Voltage	See the previous pages.		The rated voltage is defined as the maximum voltage which may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, V ^{p-p} or V ^{o-p} , whichever is larger, should be maintained within the rated voltage range.
3	Appearance	No defects or abnormalities		Visual inspection
4	Dimensions	Within the specified dimensions	1	Using calipers (GRM02 size is based on Microscope)
5	Dielectric Strength	No defects or abnormalities		No failure should be observed when 300%* of the rated voltage (temperature compensating type) or 250% of the rated voltage (high dielectric constant type) is applied between the terminations for 1 to 5 seconds, provided the charge/discharge current is less than 50mA. *200% for 500V
6	Insulation Resistance	C≤0.047μF: More than 10,000N C>0.047μF: More than 500Ω · I		The insulation resistance should be measured with a DC voltage not exceeding the rated voltage at 20/25℃ and 75%RH max. and within 2 minutes of charging, provided the charge/ discharge current is less than 50mA.
7	Capacitance	Within the specified tolerance		
8	Q/ Dissipation Factor (D.F.)	30pF and over: Q≥1000 30pF and below: Q≥400+20C C: Nominal Capacitance (pF)	[R6, R7, C8] W.V.: 100V : 0.025 max. (C<0.068μF) : 0.05 max. (C≥0.068μF) W.V.: 50/25V: : 0.025 max. (C<10μF) : 0.035 max. (C≥10μF) W.V.: 16/10V: 0.035 max. W.V.: 6.3/4V : 0.05 max. (C≥3.3μF) : 0.1 max. (C≥3.3μF) [E4] W.V.: 25Vmin: 0.025 max. [F1, F5] W.V.: 25V min. : 0.05 max. (C<0.1μF) : 0.09 max. (C≥0.1μF) W.V.: 16/10V: 0.125 max. W.V.: 6.3V: 0.15 max.	The capacitance/Q/D.F. should be measured at 20/25°C at the frequency and voltage shown in the table.

Below GRM Series Specifications and Test Methods (1) are applied to Non "*" PNs in capacitance table. In case "*" is added in capacitance table, please refer to GRM Series Specifications and Test Methods (2) (P.29). Continued from the preceding page.

	Continued fr	om the prece	eding page. In case "*" is added		efer to GRM	Series S	pecifications	and Tes	st Metho	ods (2) (P.29).
No	l+c	n m	•	cations			Toot Ma	athod		
No.	Ite	em	Temperature Compensating Type	High Dielectric Type			Test Me	einoa		
		No bias	Within the specified tolerance (Table A-1)	B1, B3: Within ±10% (-25 to +85°C) R1, R7: Within ±15% (-55 to +125°C) R6: Within ±15% (-55 to +85°C) E4: Within +22/-56% (+10 to +85°C) F1: Within +30/-80% (-25 to +85°C) F5: Within +22/-82% (-30 to +85°C) C8: Within ±22% (-55 to +105°C)	each speci (1)Tempera The tempe capacitanc When cycli 5 (5C: +25 +25 to +8t the specific capacitanc The capaci between th	fied temperature Corature corature corature core measuring the to +125°C/+20°cd tolerare change tance dreamaxim and 5 by t	mpensating T pefficient is de tred in step 3 amperature se 5°C/ΔC: +20 to +85°C) the noce for the tere as Table A-fift is calculate num and minin he cap. value	ype termined as a refer quentiall +125°c: capacital nperature I. d by divid	I using the rence. y from some coefficient to the rence should be coefficient to the rence should be coefficient to the rence should be rence rence should	he step 1 through emp. coeffs.: uld be within cient and differences values in the
				, , , , , , , , , , , , , , , , , , ,		•		emperatence Tem	- ' '	
		50% of the Rated		B1: Within +10/-30% R1: Within +15/-40%	2	2	-55±3 (fo -30±3 -2	or ΔC to 7 (for F5), 5±3 (for	'U/1X/R 10±3 (f other T(6/R7/C8) for E4) C)
		Voltage		F1: Within +30/–95%			125±3 (fo	ence Tem	•	
						1	,	± 3 (for c		, ,
	Capacitance				5	5	Refere	ence Tem	nperatur	re ±2
9	Temperature Characteristics	Capacitance Drift	Within ±0.2% or ±0.05pF (Whichever is larger.) *Do not apply to 1X/25V	*Initial measurement for high dielectric constant type Perform a heat treatment at 150+0/-10°C for one hour and then set for 24±2 hours at room temperature. Perform the initial measurement.	The ranges value over be within the ln case of a measured	s of capa the temp ne specifi applying after 1 m n of each Ter Refere -55: -25: -30±3 Refere 12: 85: Refere -22: Refere	citance change erature range ied ranges.* voltage, the core min. with h temp. stage mperature (°C ence Tempera ±3 (for R1, R7 ±3 (for B1, B3 (for F5)/10±3 ence Tempera 5±3 (for R1, F5, E4) ence Tempera 5±3 (for R1, F5, E4) ence Tempera 15±3 (for R1, Istance Tempera 15±3 (for	voltage, the capacitance of ore min. with applying voltage. The perature (°C) Applying temp. stage. Applying tem		able should
10	Adhesive of Termin	_	No removal of the terminations	or other defect should occur. C Solder resist Baked electrode or copper foil	Fig. 1a usir parallel with The solder reflow meth soldering is	ng an eu h the tes ing shou hod and s uniform 02), 2N	r to the test jig tectic solder. It jig for 10±1 ld be done eit should be corn and free of d (GRM03), 5N a 0.2 0.3 0.4 1.0 1.2 2.2 2.2 3.5 4.5	Then app sec. her with a nducted w efects su	an iron ovith care ich as h	or using the e so that the eat shock.

Below GRM Series Specifications and Test Methods (1) are applied to Non "*" PNs in capacitance table.

Continued from the preceding page. In case "*" is added in capacitance table, please refer to GRM Series Specifications and Test Methods (2) (P.29).

			Specif	ications				
No.	Ite	em	Temperature Compensating Type	High Dielectric Type		Test M	ethod	
		Appearance	No defects or abnormalities					
		Capacitance	Within the specified tolerance					
11	Vibration Resistance	Q/D.F.	30pF and over: Q≥1000 30pF and below: Q≥400+20C C: Nominal Capacitance (pF)	[B1, B3, R6, R7, C8] W.V.: 100V : 0.025 max. (C<0.068μF) : 0.05 max. (C≥0.068μF) W.V.: 50/25V: : 0.025 max. (C<10μF) : 0.035 max. (C≥10μF) W.V.: 16/10V: 0.035 max. W.V.: 6.3/4V : 0.05 max. (C<3.3μF) : 0.1 max. (C≥3.3μF) [E4] W.V.: 25Vmin: 0.025 max. [F1, F5] W.V.: 25V min. : 0.05 max. (C<0.1μF) : 0.09 max. (C≥0.1μF) W.V.: 16/10V: 0.125 max. W.V.: 6.3V: 0.15 max.	Solder the capacite same manner and The capacitor shou having a total amp uniformly between frequency range, fi be traversed in app applied for a period perpendicular direct	under the san uld be subjected litude of 1.5mi the approximator om 10 to 55H proximately 1 in d of 2 hours in	ne conditions a ed to a simple hem, the frequence ate limits of 10 z and return to minute. This meeach of 3 mutu	s (10). narmonic motion by being varied and 55Hz. The 10Hz, should btion should be
			No crack or marked defect sho	uld occur.	Solder the capacitor in Fig. 2a using an direction shown in done by the reflow so that the solderin shock.	eutectic solde Fig. 3a for 5± method and s	er. Then apply a 1 sec. The solo should be cond	a force in the dering should be ucted with care
12	Deflection	n	R230	0 Pressurizing speed : 1.0mm/sec. Pressurize Flexure : ≤1	Type GRM02	100 Fig.	2a t: 1.6mm (GRM02)	/03/15: t: 0.8mm) C 0.23
			Capacitance	meter	GRM03	0.3	0.9	0.3
			45	45	GRM15	0.4	1.5	0.5
					GRM18	1.0	3.0	1.2
			Fig. 3a		GRM21	1.2	4.0	1.65
					GRM31 GRM32	2.2	5.0 5.0	2.0
					GRM43	3.5	7.0	3.7
					GRM55	4.5	8.0	5.6
							-	(in mm)
		lity of		be soldered evenly and	Immerse the capac rosin (JIS-K-5902) Preheat at 80 to 12	(25% rosin in	weight proport	•

Continued on the following page. $\boxed{ }$

Below GRM Series Specifications and Test Methods (1) are applied to Non "*" PNs in capacitance table. In case "*" is added in capacitance table, please refer to GRM Series Specifications and Test Methods (2) (P.29). Continued from the preceding page.

				ications	efer to GRM Series Specifications and Test Methods (2) (P.29
No.	lt∈	em	Temperature Compensating Type	High Dielectric Type	Test Method
			The measured and observed cl specifications in the following ta		
		Appearance	No defects or abnormalities		
		Capacitance Change	Within ±2.5% or ±0.25pF (Whichever is larger)	B1, B3, R1, R6, R7, C8 : Within ±7.5% F1, F5, E4: Within ±20%	
14	Resistance to Soldering Heat	Q/D.F.	30pF and over: Q≧1000 30pF and below: Q≥400+20C	[B1, B3, R6, R7, C8] W.V.: 100V : 0.025 max. (C<0.068μF) : 0.05 max. (C≥0.068μF) W.V.: 50/25V: : 0.025 max. (C<10μF) : 0.035 max. (C≥10μF) W.V.: 16/10V: 0.035 max. W.V.: 6.3/4V : 0.05 max. (C≥3.3μF) : 0.1 max. (C≥3.3μF)	Preheat the capacitor at 120 to 150°C for 1 minute. Immerse the capacitor in an eutectic solder or Sn-3.0Ag-0.5Ct solder solution at 270±5°C for 10±0.5 seconds. Set at room temperature for 24±2 hours, then measure. •Initial measurement for high dielectric constant type Perform a heat treatment at 150+0/-10°C for one hour and then set at room temperature for 24±2 hours. Perform the initial measurement. •Preheating for GRM32/43/55
			C: Nominal Capacitance (pF)	[E4]	Step Temperature Time
				W.V.: 25Vmin: 0.025 max. [F1, F5]	1 100 to 120℃ 1 min.
				W.V.: 25V min. : 0.05 max. (C<0.1μF) : 0.09 max. (C≧0.1μF) W.V.: 16/10V: 0.125 max. W.V.: 6.3V: 0.15 max.	2 170 to 200℃ 1 min.
		I.R.	More than $10,000M\Omega$ or 500Ω	F (Whichever is smaller)	
		Dielectric Strength	No defects		
			The measured and observed cl specifications in the following ta		
		Appearance	No defects or abnormalities		
		Capacitance Change	Within ±2.5% or ±0.25pF (Whichever is larger)	B1, B3, R1, R6, R7, C8 : Within ±7.5% F1, F5, E4: Within ±20%	Fix the capacitor to the supporting jig in the same
15	Temperature Cycle	Q/D.F.	30pF and over: Q≧1000 30pF and below: Q≥400+20C C: Nominal Capacitance (pF)	[B1, B3, R6, R7, C8] W.V.: 100V : 0.025 max. (C<0.068μF) : 0.05 max. (C≥0.068μF) W.V.: 50/25V: : 0.025 max. (C≥10μF) : 0.035 max. (C≥10μF) W.V.: 16/10V: 0.035 max. W.V.: 6.3/4V : 0.05 max. (C≥3.3μF) : 0.1 max. (C≥3.3μF) [E4] W.V.: 25Vmin: 0.05 max. [F1, F5] W.V.: 25V min. : 0.05 max. (C<0.1μF) : 0.09 max. (C≥0.1μF) W.V.: 16/10V: 0.125 max. W.V.: 6.3V: 0.15 max.	manner and under the same conditions as (10). Perform the five cycles according to the four heat treatments shown in the following table. Set for 24±2 hours at room temperature, then measure. Step
		I.R.	More than $10,000 M\Omega$ or 500Ω	F (Whichever is smaller)	
		Dielectric Strength	No defects		

Below GRM Series Specifications and Test Methods (1) are applied to Non "*" PNs in capacitance table.

Continued from the preceding page. In case "*" is added in capacitance table, please refer to GRM Series Specifications and Test Methods (2) (P.29).

			Specif	ications	
lo.	Ite	em	Temperature Compensating Type	High Dielectric Type	Test Method
			The measured and observed chapecifications in the following ta	•	
		Appearance	No defects or abnormalities		
		Capacitance Change	Within ±5% or ±0.5pF (Whichever is larger)	B1, B3, R1, R6, R7, C8 : Within ±12.5% F1, F5, E4: Within ±30%	
16	Humidity (Steady State)	Q/D.F.	30pF and over: Q≥350 10pF and over 30pF and below: Q≥275+2.5C 10pF and below: Q≥200+10C C: Nominal Capacitance (pF)	[R6, R7, C8] W.V.: 100V : 0.05 max. (C<0.068μF) : 0.075 max. (C≥0.068μF) W.V.: 50/25/16/10V : 0.05 max. W.V.: 6.3/4V : 0.075 max. (C≥3.3μF) : 0.125 max. (C≥3.3μF) [E4] W.V.: 25Vmin: 0.05 max. [F1, F5] W.V.: 25V min. : 0.075 max. (C<0.1μF) : 0.125 max. (C≥0.1μF) W.V.: 16/10V: 0.15 max. W.V.: 6.3V: 0.2 max.	Set the capacitor at 40±2°C and in 90 to 95% humidity for 500±12 hours. Remove and set for 24±2 hours at room temperature, then measure.
		I.R.	More than 1,000MΩ or 50Ω · F		
			The measured and observed ch specifications in the following ta		
		Appearance	No defects or abnormalities		
		Capacitance Change	Within ±7.5% or ±0.75pF (Whichever is larger)	B1, B3, R1, R6, R7, C8 : Within ±12.5% F1, F5, E4: Within ±30% [W.V.: 10V max.] F1, F5: Within +30/-40%	
17	Humidity Load	Q/D.F.	30pF and over: Q≥200 30pF and below: Q≥100+10C/3 C: Nominal Capacitance (pF)	[B1, B3, R6, R7, C8] W.V.: 100V : 0.05 max. (C<0.068μF) : 0.075 max. (C≥0.068μF) W.V.: 50/25/16/10V : 0.05 max. W.V.: 6.3/4V : 0.075 max. (C≥3.3μF) : 0.125 max. (C≥3.3μF) [E4] W.V.: 25Vmin: 0.05 max. [F1, F5] W.V.: 25V min. : 0.075 max. (C<0.1μF) : 0.125 max. (C≥0.1μF) W.V.: 16/10V: 0.15 max. W.V.: 6.3V: 0.2 max.	Apply the rated voltage at 40±2°C and 90 to 95% humidity for 500±12 hours. Remove and set for 24±2 hours at room temperature, then measure. The charge/discharge current is less than 50mA. Initial measurement for F1, F5/10V max. Apply the rated DC voltage for 1 hour at 40±2°C. Remove and set for 24±2 hours at room temperature. Perform initial measurement.

Below GRM Series Specifications and Test Methods (1) are applied to Non "*" PNs in capacitance table. Continued from the preceding page. In case "*" is added in capacitance table, please refer to GRM Series Specifications and Test Methods (2) (P.29).

			Specif	ications	
No.	lt∈	em	Temperature Compensating Type	High Dielectric Type	Test Method
			The measured and observed cl specifications in the following to	naracteristics should satisfy the able.	
		Appearance	No defects or abnormalities		
		Capacitance Change	Within ±3% or ±0.3pF (Whichever is larger)	B1, B3, R1, R6, R7, C8 : Within ±12.5% F1, F5, E4: Within ±30% [Except 10V max. and. C≥1.0µF] F1, F5: Within +30/-40% [10V max. and C≥1.0µF]	Apply 200% (GRM21BR71H105, GRM21BR72A474, GRM31CR71H475: 150% of the rated voltage) of the rated
18	High Temperature Load	Q/D.F.	30pF and over: Q≥350 10pF and over 30pF and below: Q≥275+2.5C 10pF and below: Q≥200+10C C: Nominal Capacitance (pF)	[B1, B3, R6, R7, C8] W.V.: 100V : 0.05 max. (C<0.068μF) : 0.075 max. (C≥0.068μF) W.V.: 50/25/16/10V : 0.05 max. W.V.: 6.3/4V : 0.075 max. (C<3.3μF) : 0.125 max. (C≥3.3μF) [E4] W.V.: 25Vmin: 0.05 max. [F1, F5] W.V.: 25V min. : 0.075 max.(C<0.1μF) : 0.125 max.(C≥0.1μF) W.V.: 16/10V: 0.15 max. W.V.: 6.3V: 0.2 max.	voltage at the maximum operating temperature ±3°C for 1000±12 hours. Set for 24±2 hours at room temperature, then measure. The charge/discharge current is less than 50mA. •Initial measurement for high dielectric constant type. Apply 200% of the rated DC voltage at the maximum operating temperature ±3°C for one hour. Remove and set for 24±2 hours at room temperature. Perform initial measurement.
		I.R.	More than 1,000M Ω or 50 Ω \cdot F	(Whichever is smaller)	

Table A-1

			Capacitance Change from 25℃ (%)									
Char.	Nominal Values (ppm/°C)*1	_	55	_	30	-10						
		Max.	Min.	Max.	Min.	Max.	Min.					
5C	0± 30	0.58	-0.24	0.40	-0.17	0.25	-0.11					
6C	0± 60	0.87	-0.48	0.59	-0.33	0.38	-0.21					
6P	-150± 60	2.33	0.72	1.61	0.50	1.02	0.32					
6R	-220± 60	3.02	1.28	2.08	0.88	1.32	0.56					
6S	-330± 60	4.09	2.16	2.81	1.49	1.79	0.95					
6T	-470± 60	5.46	3.28	3.75	2.26	2.39	1.44					
7U	-750±120	8.78	5.04	6.04	3.47	3.84	2.21					
1X	+350 to -1000	_	_	_	_	_	_					

^{*1:} Nominal values denote the temperature coefficient within a range of 25℃ to 125℃ (for ΔC)/85℃ (for other TC).

(2)

		Capacitance Change from 20℃ (%)						
Char.	Nominal Values (ppm/℃)*2	-55		-25		-10		
		Max.	Min.	Max.	Min.	Max.	Min.	
2C	0± 60	0.82	-0.45	0.49	-0.27	0.33	-0.18	
3C	0±120	1.37	-0.90	0.82	-0.54	0.55	-0.36	
4C	0±250	2.56	-1.88	1.54	-1.13	1.02	-0.75	
2P	-150± 60	_	_	1.32	0.41	0.88	0.27	
3P	-150±120	_	_	1.65	0.14	1.10	0.09	
4P	-150±250	_	_	2.36	-0.45	1.57	-0.30	
2R	-220± 60	_	_	1.70	0.72	1.13	0.48	
3R	-220±120	_	_	2.03	0.45	1.35	0.30	
4R	-220±250	_	_	2.74	-0.14	1.83	-0.09	
2S	-330± 60	_	_	2.30	1.22	1.54	0.81	
3S	-330±120	_	_	2.63	0.95	1.76	0.63	
4S	-330±250	_	_	3.35	0.36	2.23	0.24	
2T	-470± 60	_	_	3.07	1.85	2.05	1.23	
3T	-470±120	_	_	3.40	1.58	2.27	1.05	
4T	-470±250	_	_	4.12	0.99	2.74	0.66	
3U	-750±120	_	_	4.94	2.84	3.29	1.89	
4U	-750±250	_	_	5.65	2.25	3.77	1.50	

^{*2:} Nominal values denote the temperature coefficient within a range of 20°C to 125°C (for ΔC)/85°C (for other TC).

Below GRM Series Specifications and Test Methods (2) are applied to "*" PNs in capacitance table. In case "*" is not added in capacitance table, please refer to GRM Series Specifications and Test Methods (1) (P.23).

			In case "*" is not added in capacitance table, please	e refer to GRM Series Specifications and Test Methods (1) (P.23).				
No.	Ite	em	Specifications	Test Method				
1	Operating Temperat Range	•	B1, B3, F1: -25 to +85°C R1, R7, C7, D7, E7: -55 to +125°C C6, R6: -55 to +85°C F5: -30 to +85°C C8, D8: -55 to +105°C,	Reference temperature: 25°C (B1, B3, R1, F1: 20°C)				
2	Rated Voltage See the previous pages.			The rated voltage is defined as the maximum voltage which may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, V ^{p,p} or V ^{o,p} , whichever is larger, should be maintained within the rated voltage range.				
3	Appearar	nce	No defects or abnormalities	Visual inspection				
4	Dimensio	ns	Within the specified dimensions	Using calipers				
5	5 Dielectric Strength		No defects or abnormalities	No failure should be observed when 250% of the rated volta is applied between the terminations for 1 to 5 seconds, provided the charge/discharge current is less than 50mA.				
6	6 Insulation Resistance		More than 50Ω ⋅ F	The insulation resistance should be measured with a DC voltage not exceeding the rated voltage at reference temperature and 75%RH max. and within 1 minutes of charging, provided the charge/discharge current is less than 50mA.				
7	7 Capacitance		*Table 1 GRM155 B3/R6 1A 124 to 105 GRM185 B3/R6 1C/1A 105 GRM185 C8/D7 1A 105 GRM188 B3/R6 1C/1A 225 GRM188 R7/C8 1A 225 GRM188 B3/R6 1A 335 GRM219 B3/R6 1C/1A 475, 106 GRM219 C8 1A 475 GRM21B B3/R6 1C/1A 106 GRM21B R7/C8 1A 106 GRM21B R7/C8 1A 106 GRM21B R7/C8 1A 106	The capacitance/D.F. should be measured at reference temperature at the frequency and voltage shown in the table. Capacitance Frequency Voltage				
8	Dissipation (D.F.)	n Factor	B1, B3, R6* ² , R7* ³ , C7, C8, D8* ² : 0.1 max. F1, F5: 0.2 max.					
	No bias		B1, B3: Within ±10% (-25 to +85°C) F1: Within +30/-80% (-25 to +85°C) R6: Within ±15% (-55 to +85°C) R1, R7: Within ±15% (-55 to +125°C) F5: Within +22/-82% (-30 to +85°C) C6: Within ±22% (-55 to +85°C) C7: Within ±22% (-55 to +125°C) C8: Within ±22% (-55 to +105°C) D7: Within +22/-33% (-55 to +125°C) E7: Within +22/-56% (-55 to +125°C)	The capacitance change should be measured after 5 min. at each specified temp. stage. The ranges of capacitance change compared with the reference temperature value over the temperature ranges shown in the table should be within the specified ranges.* In case of applying voltage, the capacitance change should be measured after 1 more min. with applying voltage in equilibration of each temp. stage. *GRM43 B1/R6 0J/1A 336/476 only: 1.0±0.2Vrms				
			D8 : Within +22/-33% (-55 to +105℃)	Step Temperature (°C) Applying Voltage (V				
				1 25±2 (for R6, R7, C6, C7, C8, D7, D8, E7, F5) 20±2 (for B1, B3, F1, R1)				
9	Capacitance Temperature			2 -55±3 (for R1, R6, R7, C6, C7, C8, D7, D8, E7) -30±3 (for F5) -25±3 (for B1, B3, F1)				
,	Characteristics		Rated R1: Within +15/-40%	3 25±2 (for R6, R7, C6, C7, C8, D7, D8, E7, F5) 20±2 (for B1, B3, F1, R1)				
		50% of the Rated Voltage		125±3 (for R1, R7, C7, D7, E7) 4 105±3 (for C8, D8) 85±3 (for B1, B3, F1, F5, R6, C6)				
				5 20±2 (for B1, F1, R1)				
				6 -55±3 (for R1) -25±3 (for B1, F1) 50% of the				
				7 20±2 (for B1, F1, R1) rated voltage				
				8 125±3 (for R1) 85±3 (for B1, F1)				
				•Initial measurement for high dielectric constant type Perform a heat treatment at 150 +0/-10°C for one hour and then set for 24±2 hours at room temperature. Perform the initial measurement.				

*2: GRM31CR60J107, GRM31CD80G107: 0.15 max.

^{*3:} GRM31CR71E106: 0.125 max.

Below GRM Series Specifications and Test Methods (2) are applied to "*" PNs in capacitance table.

\overline{A}	Continued fr	om the prec	eding page. In case "*" is not added in capacitance table, please	refer to GRM Series	Specification	s and Test Me		
No.	Ite	em	Specifications		Test Me	ethod		
10	Adhesive Strength of Termination		No removal of the terminations or other defects should occur.	Solder the capacitor on the test jig (glass epoxy boa in Fig. 1a using an eutectic solder. Then apply 10N parallel with the test jig for 10±1sec. The soldering should be done either with an iron or reflow method and should be conducted with care soldering is uniform and free of defects such as heaving is uniform.			n or using the are so that the heat shock.	
		Appearance	No defects or abnormalities	Solder the capacito	or on the test ii	a (alass enov	hoard) in the	
	Capacitance		Within the specified tolerance	same manner and	-		•	
11	Vibration	D.F.	B1, B3, R1, R6*2, R7*3, C7, C8, E7, D7, D8*2: 0.1 max. C6: 0.125 max. F1, F5: 0.2 max.	having a total amp uniformly between frequency range, fi be traversed in app applied for a period	ald be subjected to a simple harmonic motion litude of 1.5mm, the frequency being varied the approximate limits of 10 and 55Hz. The from 10 to 55Hz and return to 10Hz, should proximately 1 minute. This motion should be do f 2 hours in each of 3 mutually ections (total of 6 hours).			
			No cracking or marking defects should occur.	Solder the capacito	-		•	
10			20 50 Pressurizing speed : 1.0mm/sec. Pressurize R230 Flexure : ≤1	in Fig. 2a using an eutectic solder. Then apply a force in the direction shown in Fig. 3a for 5±1 sec. The soldering should be done by the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. 100 64.5				
12	Deflection	Tection 45 45						
				Typo	_		/03/15: t: 0.8mm)	
			Fig.3a	GRM02	0.2	0.56	0.23	
				GRM03	0.3	0.9	0.3	
				GRM15	0.4	1.5	0.5	
				GRM18	1.0	3.0	1.2	
				GRM21	1.2	4.0	1.65	
				GRM31 GRM32	2.2	5.0 5.0	2.0	
				GRM43	3.5	7.0	3.7	
				GRM55	4.5	8.0	5.6	
				(in mm)				
13	Solderab Terminati		75% of the terminations is to be soldered evenly and continuously.	Immerse the capac rosin (JIS-K-5902) Preheat at 80 to 12 After preheating, ir 2±0.5 seconds at 2 for 2±0.5 seconds	(25% rosin in 20℃ for 10 to 3 nmerse in an e 230±5℃ or Sn	weight proport 0 seconds. eutectic solder	JIS-K-8101) and ion) .	

^{*2:} GRM31CR60J107, GRM31CD80G107: 0.15 max.

^{*3:} GRM31CR71E106: 0.125 max.

Below GRM Series Specifications and Test Methods (2) are applied to "*" PNs in capacitance table. In case "*" is not added in capacitance table, please refer to GRM Series Specifications and Test Methods (1) (P.23). Continued from the preceding page.

No.	No. Item		Specifications		Test Method				
14	Resistance to Soldering Heat	Appearance Capacitance	No defects or abnormalities B1, B3, R1, R6*4, R7, C6, C7, C8, E7, D7, D8: Within ±7.5%	Preheat the capacitor at 120 to 150°C for 1 minute. Immerse the capacitor in an eutectic solder or Sn-3.0Ag-0.5Cu solder solution at 270±5°C for 10±0.5 seconds. Set at room temperature for 24±2 hours, then measure.					
		Change	F1, F5: Within ±20%						
		D.F.	B1, B3, R1, R6* ² , R7* ³ , C7, C8, E7, D7, D8* ² : 0.1 max. C6: 0.125 max. F1, F5: 0.2 max.	*Do not apply to GRM02. •Initial measurement for high dielectric constant type				.	
		I.R.	More than $50\Omega \cdot F$	Perform a heat treatment at 150+0/−10°C for one hour and					
		Dielectric	No defects	then set at room temperature for 24±2 hours. Perform the initial measurement. *Preheating for GRM32/43/55					
		Strength		Step	Temperature Tim				
				1	100 to 120℃			1 min.	
				2	170 to 200℃ 1 min.				
		Appearance	No defects or abnormalities	Fix the capacitor to the supporting jig in the same manner and under the same conditions as (10).					
		Capacitance Change	B1, B3, R1, R6, R7, C6, C7, C8, D7, D8: Within ±7.5% E7: Within ±30% F1, F5: Within ±20%	Perform the five cycles according to the four heat treatments shown in the following table. Set for 24±2 hours at room temperature, then measure.					
		D.F.	B1, B3, R1, R6*2, R7*3, C7, C8, E7, D7, D8*2: 0.1 max.						
15	Temperature		C6: 0.125 max. F1, F5: 0.2 max.	Step	1 Min	2	3 May	4	
	Sudden Change	I.R.	More than $50\Omega \cdot F$	Temp. (℃)	Min. Operating Temp. +0/-3	Room Temp.	Max. Operating Temp. +3/-0	Room Temp.	
				Time (min.)	30±3	2 to 3	30±3	2 to 3	
		Dielectric Strength	No defects	•Initial measurement for high dielectric constant type Perform a heat treatment at 150+0/−10°C for one hour and then set at room temperature for 24±2 hours.					
		Appearance	No defects or abnormalities	Perform the initial measurement. Apply the rated voltage at 40±2°C and 90 to 95% humidity for					
	High Temperature High Humidity (Steady)	Capacitance Change	B1, B3, R1, R6, R7, C6, C7, C8, E7, D7, D8: Within ±12.5% F1, F5: Within ±30%	•Initial measurement Perform a heat treatment at 150+0/-10°C for one hour and then let sit for 24±2 hours at room temperature. Perform the initial measurement. •Measurement after test Perform a heat treatment at 150+0/-10°C for one hour and then let sit for 24±2 hours at room temperature, then measure.					
16		D.F.	B1, B3, R1, R6, R7, C6, C7, C8, E7, D7, D8: 0.2 max. F1, F5: 0.4 max.						
		I.R.	More than 12.5 Ω · F						
		Appearance	No defects or abnormalities		Apply 150% of the rated voltage for 1000±12 hours at the				
17	Durability -	Capacitance Change	B1, B3, R1, R6, R7, C6, C7, C8, E7, D7, D8: Within ±12.5% F1, F5: Within ±30%	maximum operating temperature ±3°C. Let sit for 24±2 hours at room temperature, then measure. The charge/discharge current is less than 50mA.					
		D.F.	B1, B3, R1, R6, R7, C6, C7, C8, E7, D7, D8: 0.2 max. F1, F5: 0.4 max.	•Initial measurement					
		I.D.	Many than OFO F	Perform a heat treatment at 150+0/−10℃ for o then let sit for 24±2 hours at room temperature initial measurement.					
		I.R.	More than $25\Omega \cdot F$		•Measurement after test Perform a heat treatment at 150+0/−10℃ for one hour and then let sit for 24±2 hours at room temperature, then measure.				

^{*2:} GRM31CR60J107, GRM31CD80G107: 0.15 max.

^{*3:} GRM31CR71E106: 0.125 max.

^{*4:} GRM153R60G105, GRM188R60J106: Within ±12.5%

GRM Series Data

■ Capacitance - Temperature Characteristics

■ Impedance - Frequency Characteristics

■ Capacitance - DC Voltage Characteristics

■ Capacitance - AC Voltage Characteristics

GRM Series Data

Continued from the preceding page.

■ Capacitance Change - Aging

■ Allowable Apparent Power - Frequency

■ Allowable Voltage - Frequency

■ Allowable Current - Frequency

